معرفی شرکت ها


blaze-0.9.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Blaze
ویژگی مقدار
سیستم عامل -
نام فایل blaze-0.9.1
نام blaze
نسخه کتابخانه 0.9.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Continuum Analytics
ایمیل نویسنده blaze-dev@continuum.io
آدرس صفحه اصلی UNKNOWN
آدرس اینترنتی https://pypi.org/project/blaze/
مجوز BSD
.. image:: https://raw.github.com/blaze/blaze/master/docs/source/svg/blaze_med.png :align: center |Build Status| |Coverage Status| |Join the chat at https://gitter.im/blaze/blaze| **Blaze** translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar interface to query data living in other data storage systems. Example ======= We point blaze to a simple dataset in a foreign database (PostgreSQL). Instantly we see results as we would see them in a Pandas DataFrame. .. code:: python >>> import blaze as bz >>> iris = bz.Data('postgresql://localhost::iris') >>> iris sepal_length sepal_width petal_length petal_width species 0 5.1 3.5 1.4 0.2 Iris-setosa 1 4.9 3.0 1.4 0.2 Iris-setosa 2 4.7 3.2 1.3 0.2 Iris-setosa 3 4.6 3.1 1.5 0.2 Iris-setosa These results occur immediately. Blaze does not pull data out of Postgres, instead it translates your Python commands into SQL (or others.) .. code:: python >>> iris.species.distinct() species 0 Iris-setosa 1 Iris-versicolor 2 Iris-virginica >>> bz.by(iris.species, smallest=iris.petal_length.min(), ... largest=iris.petal_length.max()) species largest smallest 0 Iris-setosa 1.9 1.0 1 Iris-versicolor 5.1 3.0 2 Iris-virginica 6.9 4.5 This same example would have worked with a wide range of databases, on-disk text or binary files, or remote data. What Blaze is not ================= Blaze does not perform computation. It relies on other systems like SQL, Spark, or Pandas to do the actual number crunching. It is not a replacement for any of these systems. Blaze does not implement the entire NumPy/Pandas API, nor does it interact with libraries intended to work with NumPy/Pandas. This is the cost of using more and larger data systems. Blaze is a good way to inspect data living in a large database, perform a small but powerful set of operations to query that data, and then transform your results into a format suitable for your favorite Python tools. In the Abstract =============== Blaze separates the computations that we want to perform: .. code:: python >>> accounts = Symbol('accounts', 'var * {id: int, name: string, amount: int}') >>> deadbeats = accounts[accounts.amount < 0].name From the representation of data .. code:: python >>> L = [[1, 'Alice', 100], ... [2, 'Bob', -200], ... [3, 'Charlie', 300], ... [4, 'Denis', 400], ... [5, 'Edith', -500]] Blaze enables users to solve data-oriented problems .. code:: python >>> list(compute(deadbeats, L)) ['Bob', 'Edith'] But the separation of expression from data allows us to switch between different backends. Here we solve the same problem using Pandas instead of Pure Python. .. code:: python >>> df = DataFrame(L, columns=['id', 'name', 'amount']) >>> compute(deadbeats, df) 1 Bob 4 Edith Name: name, dtype: object Blaze doesn't compute these results, Blaze intelligently drives other projects to compute them instead. These projects range from simple Pure Python iterators to powerful distributed Spark clusters. Blaze is built to be extended to new systems as they evolve. Getting Started =============== Blaze is available on conda or on PyPI :: conda install blaze pip install blaze Development builds are accessible :: conda install blaze -c blaze pip install http://github.com/blaze/blaze --upgrade You may want to view `the docs <http://blaze.pydata.org>`__, `the tutorial <http://github.com/blaze/blaze-tutorial>`__, `some blogposts <http://continuum.io/blog/tags/blaze>`__, or the `mailing list archives <https://groups.google.com/a/continuum.io/forum/#!forum/blaze-dev>`__. Development setup ================= The quickest way to install all Blaze dependencies with ``conda`` is as follows :: conda install blaze spark -c blaze -c anaconda-cluster -y conda remove odo blaze blaze-core datashape -y After running these commands, clone ``odo``, ``blaze``, and ``datashape`` from GitHub directly. These three projects release together. Run ``python setup.py develop`` to make development installations of each. License ======= Released under BSD license. See `LICENSE.txt <LICENSE.txt>`__ for details. Blaze development is sponsored by Continuum Analytics. .. |Build Status| image:: https://travis-ci.org/blaze/blaze.png :target: https://travis-ci.org/blaze/blaze .. |Coverage Status| image:: https://coveralls.io/repos/blaze/blaze/badge.png :target: https://coveralls.io/r/blaze/blaze .. |Join the chat at https://gitter.im/blaze/blaze| image:: https://badges.gitter.im/Join%20Chat.svg :target: https://gitter.im/blaze/blaze?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge


نحوه نصب


نصب پکیج whl blaze-0.9.1:

    pip install blaze-0.9.1.whl


نصب پکیج tar.gz blaze-0.9.1:

    pip install blaze-0.9.1.tar.gz