معرفی شرکت ها


bl-predictor-1.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A simple application for predicting game results for the German Bundesliga
ویژگی مقدار
سیستم عامل -
نام فایل bl-predictor-1.2
نام bl-predictor
نسخه کتابخانه 1.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Lukas Gehring, Anabel Stammer, Alex Brylka and Fabricio Aguilera-Galviz
ایمیل نویسنده l.gehring@student.uni-tuebingen.de
آدرس صفحه اصلی https://github.com/lgehring/bl-predictor
آدرس اینترنتی https://pypi.org/project/bl-predictor/
مجوز -
# bl-predictor <img src="https://www.python.org/static/community_logos/python-powered-w-70x28.png" alt="Python powered" align="right"> <img src="https://raw.githubusercontent.com/lgehring/bl-predictor/master/bl-predictor_logo.svg" width="150" align="right"> [![Code quality](https://www.code-inspector.com/project/17966/score/svg)](https://frontend.code-inspector.com/public/project/17966/bl-predictor/dashboard) [![Coverage status](https://coveralls.io/repos/github/lgehring/bl-predictor/badge.svg)](https://coveralls.io/github/lgehring/bl-predictor) [![PyPI](https://img.shields.io/pypi/v/bl-predictor)](https://pypi.org/project/bl-predictor/) [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](LICENSE.txt) [![pytest](https://github.com/lgehring/bl-predictor/workflows/pytest/badge.svg)](https://github.com/lgehring/bl-predictor/tree/main/tests) [![flake8](https://github.com/lgehring/bl-predictor/workflows/pep8/badge.svg)](https://www.python.org/dev/peps/pep-0008/) [![CodeQL](https://github.com/lgehring/bl-predictor/workflows/CodeQL/badge.svg)](https://codeql.github.com/docs/codeql-overview/) <br /> <span style="font-family:Helvetica; font-size:1em; font-weight:bold"> Bl-predictor is a simple application for predicting game results for the German 1. Bundesliga. It features a clean graphical user interface (including DarkMode to spare your eyes), automatic data crawling, a variety of prediction-models to choose from, and a few built-in model evaluation tools. </span> ## Usage #### Install: ```bash pip install bl-predictor ``` #### and start the GUI: ```bash bl-predictor-gui ``` The left column shows you the next upcoming matches. These are automatically crawled from [OpenligaDB](https://www.openligadb.de) when the application starts. The center column gives you the option to tweak your prediction preferences: - choose the seasons used for training the model via the slider - select a [model](#prediction-models) to train - choose a home and guest team Your result and additional information about the model used will appear in the righthand column. To make another prediction just use one of the reset-options on the bottom-left. <center> <img src="https://media.giphy.com/media/nD4GGlxODQoGXUw5lJ/giphy.gif" alt="demo"/></center> You can switch to dark mode or exit the application under "Options" in the top-left corner. <center> <img src="https://media.giphy.com/media/dQ8b4Lf5XasFzFpUEQ/giphy.gif" alt="dark mode"/></center> ## Prediction models #### PoissonModel A model that predicts the winning team out of two given teams, based on a poisson regression model. **Caution:** The model is sensitive to the order of given teams, because the home_team scores better on average! This model is heavily based on a [guideline from David Sheehan](https://dashee87.github.io/football/python/predicting-football-results-with-statistical-modelling/). #### BettingPoissonModel A adaptation of the PoissonModel improved for betting. If no relevant (>10%) difference in the teams winning probabilities is present, "Draw" is returned. #### FrequencyModel A model that uses all results of the last seasons to predict a winner based on the relative frequency of wins. ## Model Evaluation The model evaluation features no graphical user interface. To access it you will need to go into the package source files to [prediction_evaluation.py](bl_predictor/prediction_evaluation.py) and call the functions given at the bottom of the file. You can: - generate a plot about the accuracy / F1-score of all models with different trainset sizes - evaluate a single models performance - trainset information - performance measures - ((Betting-)PoissonModel also returns a team-ranking based on the models coefficients) - compare two models - get general statistics about a trainset The results will either be given as printout in the console or as plots.png and will look something like this: <a href="https://ibb.co/2d6dhHW"><img src="https://i.ibb.co/zZ5ZxDQ/Model-Evaluation.jpg" alt="Model-Evaluation" border="0"></a> <center> <a href="https://ibb.co/2YyFdws"><img src="https://i.ibb.co/Wp6HfQP/Poisson-Conf-Mat.png" alt="Poisson-Conf-Mat" border="0"></a> </center> <a href="https://imgbb.com/"><img src="https://i.ibb.co/X51FwxH/Model-Compare.jpg" alt="Model-Compare" border="0"></a> <center> <a href="https://ibb.co/CMH88xf"><img src="https://i.ibb.co/wwzggDf/Accuracy-over-time.png" alt="Accuracy-over-time" border="0"></a> </center> ## License bl-predictor is made available under the [MIT-License](LICENSE.txt)


نیازمندی

مقدار نام
~=1.1.3 pandas
~=50.3.0 setuptools
~=0.12.1 statsmodels
~=1.19.3 numpy
~=1.5.2 scipy
~=3.3.4 matplotlib
~=6.1.2 pytest
~=2.24.0 requests
~=8.1.0 pillow
~=4.6.1 lxml
~=0.8.7 tabulate
~=0.24.1 scikit-learn
~=3.2.2 ttkthemes


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl bl-predictor-1.2:

    pip install bl-predictor-1.2.whl


نصب پکیج tar.gz bl-predictor-1.2:

    pip install bl-predictor-1.2.tar.gz