معرفی شرکت ها


bitfount-0.5.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Machine Learning and Federated Learning Library.
ویژگی مقدار
سیستم عامل -
نام فایل bitfount-0.5.9
نام bitfount
نسخه کتابخانه 0.5.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Bitfount
ایمیل نویسنده info@bitfount.com
آدرس صفحه اصلی https://github.com/bitfount/bitfount
آدرس اینترنتی https://pypi.org/project/bitfount/
مجوز Apache License 2.0
<div align="center"> <img src="https://bitfount-web-resources.s3.eu-west-2.amazonaws.com/bitfount_logo_horizontal.png" width="600px"> **Federated learning and data analytics that just works** --- </br> <!-- Github workflow badges are case sensitive - the name must match the name of the workflow exactly --> ![Python versions](https://img.shields.io/pypi/pyversions/bitfount) [![PyPI Latest Release](https://img.shields.io/pypi/v/bitfount.svg)](https://pypi.org/project/bitfount/) [![PyPI Downloads](https://pepy.tech/badge/bitfount)](https://pepy.tech/project/bitfount) ![](https://github.com/bitfount/bitfount/workflows/CI/badge.svg?branch=develop) ![](https://github.com/bitfount/bitfount/workflows/tutorials/badge.svg?branch=develop) [![codecov](https://codecov.io/gh/bitfount/bitfount/branch/develop/graph/badge.svg?token=r1hulrgehK)](https://codecov.io/gh/bitfount/bitfount) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![security: bandit](https://img.shields.io/badge/security-bandit-yellow.svg)](https://github.com/PyCQA/bandit) [![mypy type checked](https://img.shields.io/badge/mypy-checked-blue)](https://github.com/python/mypy) [![flake8](https://img.shields.io/badge/linter-flake8-success)](https://github.com/PyCQA/flake8) [![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/bitfount/bitfount/blob/develop/LICENSE) <!-- ![docs-coverage](interrogate.svg) --> </div> ## Table of Contents - [Using the Docker images](#using-the-docker-images) - [Running the Python code](#running-the-python-code) - [Installation](#installation) - [Getting started (Tutorials)](#getting-started-tutorials) - [Federated training scripts](#federated-training-scripts) - [Basic Local Usage](#basic-local-usage) - [License](#license) ## Using the Docker images There are two docker images, one for running a Pod (`ghcr.io/bitfount/pod:stable`), and another for running a modelling task (`ghcr.io/bitfount/modeller:stable`). Both of the images require a `config.yaml` file to be provided to them, by default they will try to load it from `/mount/config/config.yaml` inside the docker container. You can provide this file easily by mounting/binding a volume to the container, how you do this may vary depending on your platform/environment (Docker/docker-compose/ECS), if you have any problems doing this then feel free to reach out to us. Alternative you could copy a config file into a stopped container using [docker cp](https://docs.docker.com/engine/reference/commandline/cp/). If you're using a CSV data source then you'll also need to mount your data to the container, this will need to be mounted at the path specified in your config, for simplicity it's easiest put your config and your CSV in the same directory and then mount it to the container. Once your container is running you will need to check the logs and complete the login step, allowing your container to authenticate with Bitfount. The process is the same as when running locally (e.g. the tutorials), except that we can't open the login page automatically for you. ## Running the Python code ### Installation #### Where to get it Binary installers for the latest released version are available at the [Python Package Index (PyPI)](https://pypi.org/project/bitfount). `pip install bitfount` If you want to use differential privacy (DP), you will need to install the DP extras: `pip install bitfount[dp]` If you are planning on using the `bitfount` package with Jupyter Notebooks, we recommend you install the splinter package `bitfount[tutorials]` which will make sure you are running compatible jupyter dependencies. `pip install "bitfount[tutorials]"` #### Installation from sources To install `bitfount` from source you need to create a python virtual environment. In the `bitfount` directory (same one where you found this file after cloning the git repo), execute: `pip install -r requirements/requirements.in` These requirements are set to permissive ranges but are not guaranteed to work for all releases, especially the latest versions. For a pinned version of these requirements which are guaranteed to work, run the following command instead: `pip install -r requirements/requirements.txt` To be able to use differential privacy (DP), you will need to additionally install the DP requirements: `pip install -r requirements/differential_privacy/requirements-dp.txt` For MacOS you also need to install `libomp`: `brew install libomp` ### Getting started (Tutorials) In order to run the tutorials, you also need to install the tutorial requirements: `pip install -r requirements/requirements-tutorial.txt` To get started using the Bitfount package in a federated setting, we recommend that you start with our tutorials. Run `jupyter notebook` and open up the first tutorial at: `tutorials/01_running_a_pod.ipynb` ### Federated training scripts Some simple scripts have been provided to run a Pod or Modelling job from a config file. > ⚠️ If you are running from a source install (such as from `git clone`) you will > need to use <span style="white-space: nowrap">`python -m scripts.<script_name>`</span> > rather than use `bitfount <script_name>` directly. To run a pod: `bitfount run_pod --path_to_config_yaml=<CONFIG_FILE>` To run a modelling job: `bitfount run_modeller --path_to_config_yaml=<CONFIG_FILE>` ### Basic Local Usage As well as providing the ability to use data in remote pods, this package also enables local ML training. Some example code for this purpose is given below. **1\. Import bitfount** ```python import bitfount as bf ``` **2\. Create DataSource and load data** ```python census_income = bf.CSVSource( path="https://bitfount-hosted-downloads.s3.eu-west-2.amazonaws.com/bitfount-tutorials/census_income.csv", ignore_cols=["fnlwgt"], ) census_income.load_data() ``` **3\. Create Schema** ```python schema = bf.BitfountSchema( census_income, table_name="census_income", force_stypes={ "census_income": { "categorical":[ "TARGET", "workclass", "marital-status", "occupation", "relationship", "race", "native-country", "gender", "education" ] } } ) ``` **4\. Transform Data** ```python clean_data = bf.CleanDataTransformation() processor = bf.TransformationProcessor([clean_data], schema.get_table_schema("census_income")) census_income.data = processor.transform(census_income.data) schema.add_datasource_tables(census_income, table_name="census_income") ``` **5\. Create DataStructure** ```python census_income_data_structure=bf.DataStructure( table="census_income", target="TARGET", ) ``` **6\. Create and Train Model** ```python nn = bf.PyTorchTabularClassifier( datastructure=census_income_data_structure, schema=schema, epochs=2, batch_size=256, optimizer=bf.Optimizer("RAdam", {"lr": 0.001}), ) nn.fit(census_income) nn.serialize("demo_task_model.pt") ``` **7\. Evaluate** ```python preds, target = nn.evaluate() metrics = bf.MetricCollection.create_from_model(nn) results = metrics.compute(target, preds) print(results) ``` **8\. Assert results** ```python import numpy as np assert nn._validation_results[-1]["validation_loss"] is not np.nan assert results["AUC"] > 0.7 ``` ## License The license for this software is available in the `LICENSE` file. This can be found in the Github Repository, as well as inside the Docker image.


نیازمندی

مقدار نام
>=1.4.0 GPUtil
<9.4.0,>=8.3.2 Pillow
~=5.4 PyYAML
>=3.8.0 aiohttp
>=1.0.0 albumentations
~=4.0 async-timeout
>=19.3.0 attrs
>=3.3.0 bleach
>=3.4.4 cryptography
>=5.0.0 decorator
>=2022.9.22 desert
>=0.14.1 docstring-parser
>=9.0 environs
>=1.10.211231 envyaml
>=0.1.0 fire
>=2.1.0 gmpy2
>=1.48.0 grpcio
>=0.23.0 httpx
>=8.8.0 ipython
>=5.0.1 isort
>=3.0.0 lightgbm
>=4.6.5 lxml
>=1.5.1 marshmallow-enum
>=5.10 marshmallow-polyfield
>=0.1.15 marshmallow-union
>=3.13.0 marshmallow
>=0.4.5 methodtools
>=1.0.0 msgpack
<1.24,>=1.22 numpy
>=22.0 packaging
>=1.3.0 pandas
>=0.7.3 pandasql
<5,>=4 protobuf
>=5.0.0 psutil
~=7.0.0 pyarrow
>=1.0 pydantic
>=2.4.0 pyjwt
>=7.2.0 pytest
<2,>=1.6.0 pytorch-lightning
>=3.0.0 pytorch-tabnet
>=2.26.0 requests
>=0.18.0 scikit-image
>=1.0 scikit-learn
<4.3 selenium
<2,>=1.4.0 sqlalchemy
>=0.4.2 sqlparse
>=0.0.18 sqlvalidator
>=0.11.0 statsmodels
>=2.2.0 tensorboard
>=0.1.0 torch-optimizer
<2,>=1.8.1 torch
<=0.10.2,>=0.6.0 torchmetrics
<0.15,>=0.9.1 torchvision
>=5.1.4 types-decorator
>=4.0.0 typing-extensions
>=1.26.5 urllib3
<1.2,>=1 opacus
!=1.6.4,!=1.6.5,<1.7,<2,>=1.6.0 pytorch-lightning
>=0.2.3 smartnoise-sql
<2,==1.8.1,>=1.8.1 torch
>=0.2.1 torchcsprng
<0.15,==0.9.1,>=0.9.1 torchvision
==3.8.4 aiohttp
==1.3.1 aiosignal
==1.10.2 alembic
==3.6.2 anyio
==1.4.4 appdirs
==0.1.3 appnope
==21.3.0 argon2-cffi
==21.2.0 argon2-cffi-bindings
==1.2.3 arrow
==2.2.1 asttokens
==1.10 async-generator
==4.0.2 async-timeout
==22.2.0 attrs
==0.2.0 backcall
==0.2.1 backports-zoneinfo
==4.12.0 beautifulsoup4
==6.0.0 bleach
==1.26.96 boto3
==1.29.96 botocore
==11.0.3 bravado
==5.17.1 bravado-core
==5.3.0 cachetools
==2022.12.7 certifi
==1.15.1 cffi
==5.1.0 chardet
==3.1.0 charset-normalizer
==0.4.0 chromedriver-autoinstaller
==8.1.3 click
==2.2.1 cloudpickle
==0.4.6 colorama
==0.1.3 comm
==1.0.7 contourpy
==7.2.2 coverage[toml]
==39.0.2 cryptography
==0.11.0 cycler
==0.17.6 databricks-cli
==1.6.6 debugpy
==5.1.1 decorator
==0.7.1 defusedxml
==0.3.6 distlib
==6.0.1 docker
==0.4.0 docker-pycreds
==0.4 entrypoints
==1.1.0 et-xmlfile
==1.1.1 exceptiongroup
==1.9.0 execnet
==1.2.0 executing
==2.16.3 fastjsonschema
==3.10.0 filelock
==2.2.3 flask
==4.39.2 fonttools
==1.5.1 fqdn
==1.3.3 frozenlist
==0.18.3 future
==4.0.10 gitdb
==3.1.31 gitpython
==2.0.2 greenlet
==20.1.0 gunicorn
==0.14.0 h11
==0.16.3 httpcore
==0.23.3 httpx
==3.4 idna
==6.1.0 importlib-metadata
==5.12.0 importlib-resources
==2.0.0 iniconfig
==1.13.0 intermine
==6.22.0 ipykernel
==0.5.1 ipynb
==8.11.0 ipython
==0.2.0 ipython-genutils
==20.11.0 isoduration
==2.1.2 itsdangerous
==0.18.2 jedi
==3.1.2 jinja2
==1.0.1 jmespath
==1.2.0 joblib
==2.3 jsonpointer
==1.1.0 jsonref
==4.17.3 jsonschema[format,format-nongpl]
==8.1.0 jupyter-client
==5.3.0 jupyter-core
==0.6.3 jupyter-events
==2.5.0 jupyter-server
==0.4.4 jupyter-server-terminals
==0.2.2 jupyterlab-pygments
==1.14.5 jupytext
==1.4.4 kiwisolver
==0.39.1 llvmlite
==1.2.4 mako
==3.4.1 markdown
==2.2.0 markdown-it-py
==2.1.2 markupsafe
==3.7.1 matplotlib
==0.1.6 matplotlib-inline
==0.3.5 mdit-py-plugins
==0.1.2 mdurl
==2.5.1 mirakuru
==2.0.5 mistune
==2.2.2 mlflow
==1.6 monotonic
==1.0.5 msgpack
==6.0.4 multidict
==0.5.3 nbclassic
==0.7.2 nbclient
==7.2.10 nbconvert
==5.8.0 nbformat
==1.1.1 neptune-client
==1.5.6 nest-asyncio
==6.5.3 notebook
==0.2.2 notebook-shim
==0.56.4 numba
==1.23.5 numpy
==3.2.2 oauthlib
==3.1.2 openpyxl
==1.2.0 outcome
==23.0 packaging
==1.5.3 pandas
==1.5.0 pandocfilters
==0.8.3 parso
==0.1.2 pathtools
==4.8.0 pexpect
==0.7.5 pickleshare
==9.3.0 pillow
==1.3.10 pkgutil-resolve-name
==3.1.1 platformdirs
==1.0.0 pluggy
==0.6.3 port-for
==0.16.0 prometheus-client
==3.0.38 prompt-toolkit
==4.22.1 protobuf
==5.9.4 psutil
==3.1.8 psycopg[binary]
==3.1.8 psycopg-binary
==2.9.5 psycopg2-binary
==0.7.0 ptyprocess
==0.2.2 pure-eval
==7.0.0 pyarrow
==2.21 pycparser
==2.3.1 pydicom
==2.14.0 pygments
==2.6.0 pyjwt
==23.0.0 pyopenssl
==3.0.9 pyparsing
==1.5.1 pyproject-api
==0.19.3 pyrsistent
==1.7.1 pysocks
==7.2.2 pytest
==1.0.4 pytest-aiohttp
==0.21.0 pytest-asyncio
==4.0.0 pytest-cov
==0.3.0 pytest-custom-exit-code
==1.2.0 pytest-flask
==0.21.3 pytest-httpx
==0.6.3 pytest-lazy-fixture
==3.10.0 pytest-mock
==4.1.1 pytest-postgresql
==3.12.0 pytest-randomly
==2.1.0 pytest-timeout
==3.2.1 pytest-xdist[psutil]
==2.8.2 python-dateutil
==1.0.0 python-dotenv
==2.0.7 python-json-logger
==2022.7.1 pytz
==5.4.1 pyyaml
==25.0.2 pyzmq
==1.2.4 querystring-parser
==2.28.2 requests
==1.3.1 requests-oauthlib
==0.10.1 requests-toolbelt
==0.23.1 responses
==0.1.4 rfc3339-validator
==1.5.0 rfc3986[idna2008]
==0.1.1 rfc3986-validator
==1.3.8 rfc3987
==0.6.0 s3transfer
==1.2.2 scikit-learn
==1.9.1 scipy
==4.2.0 selenium
==1.8.0 send2trash
==1.17.0 sentry-sdk
==1.3.2 setproctitle
==0.41.0 shap
==3.18.4 simplejson
==1.16.0 six
==0.0.7 slicer
==5.0.0 smmap
==1.3.0 sniffio
==2.4.0 sortedcontainers
==2.4 soupsieve
==1.4.47 sqlalchemy
==0.4.3 sqlparse
==0.6.2 stack-data
==3.0.3 swagger-spec-validator
==0.9.0 tabulate
==0.17.1 terminado
==0.4.2 testbook
==3.1.0 threadpoolctl
==1.2.1 tinycss2
==0.10.2 toml
==2.0.1 tomli
==6.2 tornado
==4.4.7 tox
==4.65.0 tqdm
==5.9.0 traitlets
==0.22.0 trio
==0.10.2 trio-websocket
==6.0.12.8 types-pyyaml
==4.5.0 typing-extensions
==1.2.0 uri-template
==1.26.15 urllib3[secure,socks]
==0.1.0 urllib3-secure-extra
==20.21.0 virtualenv
==0.14.0 wandb
==0.2.6 wcwidth
==1.12 webcolors
==0.5.1 webencodings
==1.5.1 websocket-client
==2.2.3 werkzeug
==1.2.0 wsproto
==1.8.2 yarl
==3.15.0 zipp
==3.6.2 anyio
==0.1.3 appnope
==21.3.0 argon2-cffi
==21.2.0 argon2-cffi-bindings
==1.2.3 arrow
==2.2.1 asttokens
==22.2.0 attrs
==0.2.0 backcall
==4.12.0 beautifulsoup4
==6.0.0 bleach
==1.15.1 cffi
==0.1.3 comm
==1.0.7 contourpy
==0.11.0 cycler
==1.6.6 debugpy
==5.1.1 decorator
==0.7.1 defusedxml
==1.2.0 executing
==2.16.3 fastjsonschema
==4.39.2 fonttools
==1.5.1 fqdn
==3.4 idna
==6.1.0 importlib-metadata
==5.12.0 importlib-resources
==6.22.0 ipykernel
==8.11.0 ipython
==0.2.0 ipython-genutils
==8.0.5 ipywidgets
==20.11.0 isoduration
==0.18.2 jedi
==3.1.2 jinja2
==2.3 jsonpointer
==4.17.3 jsonschema[format-nongpl]
==8.1.0 jupyter-client
==0.4.2 jupyter-contrib-core
==0.7.0 jupyter-contrib-nbextensions
==5.3.0 jupyter-core
==0.6.3 jupyter-events
==0.2.0 jupyter-highlight-selected-word
==0.6.1 jupyter-nbextensions-configurator
==2.5.0 jupyter-server
==0.4.4 jupyter-server-terminals
==0.2.2 jupyterlab-pygments
==3.0.6 jupyterlab-widgets
==1.14.5 jupytext
==1.4.4 kiwisolver
==4.9.2 lxml
==2.2.0 markdown-it-py
==2.1.2 markupsafe
==3.7.1 matplotlib
==0.1.6 matplotlib-inline
==0.3.5 mdit-py-plugins
==0.1.2 mdurl
==2.0.5 mistune
==0.5.3 nbclassic
==0.7.2 nbclient
==7.2.10 nbconvert
==5.8.0 nbformat
==1.5.6 nest-asyncio
==6.5.3 notebook
==0.2.2 notebook-shim
==1.23.5 numpy
==23.0 packaging
==1.5.0 pandocfilters
==0.8.3 parso
==4.8.0 pexpect
==0.7.5 pickleshare
==9.3.0 pillow
==1.3.10 pkgutil-resolve-name
==3.1.1 platformdirs
==0.16.0 prometheus-client
==3.0.38 prompt-toolkit
==5.9.4 psutil
==0.7.0 ptyprocess
==0.2.2 pure-eval
==2.21 pycparser
==2.14.0 pygments
==3.0.9 pyparsing
==0.19.3 pyrsistent
==2.8.2 python-dateutil
==2.0.7 python-json-logger
==5.4.1 pyyaml
==25.0.2 pyzmq
==0.1.4 rfc3339-validator
==0.1.1 rfc3986-validator
==1.8.0 send2trash
==1.16.0 six
==1.3.0 sniffio
==2.4 soupsieve
==0.6.2 stack-data
==0.17.1 terminado
==1.2.1 tinycss2
==0.10.2 toml
==6.2 tornado
==4.65.0 tqdm
==5.9.0 traitlets
==1.2.0 uri-template
==0.2.6 wcwidth
==1.12 webcolors
==0.5.1 webencodings
==1.5.1 websocket-client
==4.0.6 widgetsnbextension
==3.15.0 zipp


زبان مورد نیاز

مقدار نام
>=3.8,<3.10,!=3.9.7 Python


نحوه نصب


نصب پکیج whl bitfount-0.5.9:

    pip install bitfount-0.5.9.whl


نصب پکیج tar.gz bitfount-0.5.9:

    pip install bitfount-0.5.9.tar.gz