معرفی شرکت ها


biovida-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Automated BioMedical Information Curation for Machine Learning Applications.
ویژگی مقدار
سیستم عامل -
نام فایل biovida-0.1.1
نام biovida
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Tariq A. Hassan
ایمیل نویسنده laterallattice@gmail.com
آدرس صفحه اصلی https://github.com/TariqAHassan/BioVida.git
آدرس اینترنتی https://pypi.org/project/biovida/
مجوز BSD
BioVida is a library designed to make it easy to gain access to existing data sets of biomedical images as well as build brand new, custom-made ones. It is hoped that by automating the tedious data munging that is typically involved in this process, more people will become interested in applying machine learning to biomedical images and, in turn, advancing insights into human disease. In a nod to recursion, BioVida tries to accomplish some of this automation with machine learning itself, using tools like convolutional neural networks. Installation ------------ Python Package Index: .. code:: bash $ pip install biovida Latest Build: .. code:: bash $ pip install git+git://github.com/TariqAHassan/BioVida@master Requires Python 3.4+ Images: Stable -------------- In just a few lines of code, you can gain access to biomedical databases which store tens of millions of images. *Please note that you are bound to adhere to the copyright and other usage restrictions under which this data is provided to you by its creators.* Open-i BioMedical Image Search Engine ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code:: python # 1. Import the Interface for the NIH's Open-i API. from biovida.images import OpeniInterface # 2. Create an Instance of the Tool opi = OpeniInterface() # 3. Perform a search for x-rays and cts of lung cancer opi.search(query='lung cancer', image_type=['x_ray', 'ct']) # Results Found: 9,220. # 4. Pull the data search_df = opi.pull() Cancer Imaging Archive ^^^^^^^^^^^^^^^^^^^^^^ .. code:: python # 1. Import the interface for the Cancer Imaging Archive from biovida.images import CancerImageInterface # 2. Create an Instance of the Tool cii = CancerImageInterface(YOUR_API_KEY_HERE) # 3. Perform a search cii.search(cancer_type='esophageal') # 4. Pull the data cdf = cii.pull() Both ``CancerImageInterface`` and ``OpeniInterface`` cache images for later use. When data is 'pulled', a ``records_db`` is generated, which is a dataframe of all text data associated with the images. They are provided as class attributes, e.g., ``cii.records_db``. While ``records_db`` only stores data from the most recent data pull, ``cache_records_db`` dataframes provides an account of all image data currently cached. Splitting Images ^^^^^^^^^^^^^^^^ BioVida can divide cached images into train/validation/test. .. code:: python from biovida.images import image_divvy # 1. Define a rule to 'divvy' up images in the cache. def my_divvy_rule(row): if row['image_modality_major'] == 'x_ray': return 'x_ray' elif row['image_modality_major'] == 'ct': return 'ct' # 2. Define Proportions and Divide Data tt = image_divvy(opi, my_divvy_rule, action='ndarray', train_val_test_dict={'train': 0.8, 'test': 0.2}) # 3. The resultant ndarrays can be unpacked as follows: train_ct, train_xray = tt['train']['ct'], tt['train']['x_ray'] test_ct, test_xray = tt['test']['ct'], tt['test']['x_ray'] Images: Experimental -------------------- Automated Image Data Cleaning ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Unfortunately, the data pulled from Open-i above is likely to contain a large number of images unrelated to the search query and/or are unsuitable for machine learning. The *experimental* ``OpeniImageProcessing`` class can be used to completely automate this data cleaning process, which is partly powered by a Convolutional Neural Network. .. code:: python # 1. Import Image Processing Tools from biovida.images import OpeniImageProcessing # 2. Instantiate the Tool using the OpeniInterface Instance ip = OpeniImageProcessing(opi) # 3. Analyze the Images idf = ip.auto() # 4. Use the Analysis to Clean Images ip.clean_image_dataframe() It is easy to split these images into training and test sets. .. code:: python from biovida.images import image_divvy def my_divvy_rule(row): if row['image_modality_major'] == 'x_ray': return 'x_ray' elif row['image_modality_major'] == 'ct': return 'ct' tt = image_divvy(ip, my_divvy_rule, action='ndarray', train_val_test_dict={'train': 0.8, 'test': 0.2}) # These ndarrays can be unpack as shown above. Genomic Data ------------ While primarily focused on images, BioVida also provides a simple interface for obtaining related information, such genomic data. .. code:: python # 1. Import the Interface for DisGeNET.org from biovida.genomics import DisgenetInterface # 2. Create an Instance of the Tool dna = DisgenetInterface() # 3. Pull a Database gdf = dna.pull('curated') Diagnostic Data --------------- BioVida also makes it easy to obtain diagnostics data. Information on disease definitions, families and synonyms: .. code:: python # 1. Import the Interface for DiseaseOntology.org from biovida.diagnostics import DiseaseOntInterface # 2. Create an Instance of the Tool doi = DiseaseOntInterface() # 3. Pull the Database ddf = doi.pull() Information on symptoms associated with diseases: .. code:: python # 1. Import the Interface for Disease-Symptoms Information from biovida.diagnostics import DiseaseSymptomsInterface # 2. Create an Instance of the Tool dsi = DiseaseSymptomsInterface() # 3. Pull the Database dsdf = dsi.pull() Unifying Information -------------------- The ``unify_against_images`` function integrates image data information against ``DisgenetInterface``, ``DiseaseOntInterface`` and ``DiseaseSymptomsInterface``. .. code:: python from biovida.unification import unify_against_images unify_against_images(interfaces=[cii, opi], db_to_extract='cache_records_db') Left side of DataFrame: Image Data Alone +----+----------+--------+-----------+------------------------+-----+-------+------------+-----+ | | article\ | image\ | image\_ca | modality\_best\_guess | age | sex | disease | ... | | | _type | _id | ption | | | | | | +====+==========+========+===========+========================+=====+=======+============+=====+ | 0 | case\_re | 1 | ... | Magnetic Resonance | 73 | male | fibroma | ... | | | port | | | Imaging (MRI) | | | | | +----+----------+--------+-----------+------------------------+-----+-------+------------+-----+ | 1 | case\_re | 2 | ... | Magnetic Resonance | 73 | male | fibroma | ... | | | port | | | Imaging (MRI) | | | | | +----+----------+--------+-----------+------------------------+-----+-------+------------+-----+ | 2 | case\_re | 1 | ... | Computed Tomography | 45 | femal | bile duct | ... | | | port | | | (CT): angiography | | e | cancer | | +----+----------+--------+-----------+------------------------+-----+-------+------------+-----+ Right side of DataFrame: Added Information +----------------+-------------+------------+---------------+------------+--------------+ | disease\_famil | disease\_sy | disease\_d | known\_associ | mentioned\ | known\_assoc | | y | nonym | efinition | ated\_symptom | _symptoms | iated\_genes | | | | | s | | | +================+=============+============+===============+============+==============+ | (cell type | nan | nan | (abdominal | (pain,) | ((ANTXR2, | | benign | | | pain,...) | | 0.12), ...) | | neoplasm,) | | | | | | +----------------+-------------+------------+---------------+------------+--------------+ | (cell type | nan | nan | (abdominal | (pain,) | ((ANTXR2, | | benign | | | pain,...) | | 0.12), ...) | | neoplasm,) | | | | | | +----------------+-------------+------------+---------------+------------+--------------+ | (biliary tract | (bile duct | A biliary | (abdominal | (colic,) | nan | | cancer,) | tumor,...) | tract... | obesity,..) | | | +----------------+-------------+------------+---------------+------------+--------------+ -------------- Documentation ------------- - `Getting Started <https://tariqahassan.github.io/BioVida/GettingStarted.html>`__ - `Tutorials <http://nbviewer.jupyter.org/github/tariqahassan/BioVida/tree/master/tutorials/>`__ - `API Documentation <https://tariqahassan.github.io/BioVida/API.html>`__ Contributing ------------ For more information on how to contribute, see the `contributing <https://github.com/TariqAHassan/BioVida/blob/master/CONTRIBUTING.md>`__ document. Bug reports and feature requests are always welcome and can be provided through the `Issues <https://github.com/TariqAHassan/BioVida/issues>`__ page. Resources --------- The `resources <https://github.com/TariqAHassan/BioVida/blob/master/RESOURCES.md>`__ document provides an account of all data sources and scholarly work used by BioVida.


نحوه نصب


نصب پکیج whl biovida-0.1.1:

    pip install biovida-0.1.1.whl


نصب پکیج tar.gz biovida-0.1.1:

    pip install biovida-0.1.1.tar.gz