معرفی شرکت ها


biotrade-0.0.23


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Agriculture and forestry statistics.
ویژگی مقدار
سیستم عامل -
نام فایل biotrade-0.0.23
نام biotrade
نسخه کتابخانه 0.0.23
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Paul Rougieux, Selene Patani
ایمیل نویسنده paul.rougieux@gmail.com
آدرس صفحه اصلی https://gitlab.com/bioeconomy/forobs/biotrade/
آدرس اینترنتی https://pypi.org/project/biotrade/
مجوز MIT
The `biotrade` package analyses international trade of bio-based products. It focuses on the agriculture and forestry sectors, from primary production to secondary products transformation. It loads bilateral trade data from UN Comtrade, production and trade data from FAOSTAT and socio-economic indicators from the World Bank. Extraction rates and waste of supply are taken from the FAO, technical conversion factors for agricultural commodities available at: https://www.fao.org/economic/the-statistics-division-ess/methodology/methodology-systems/technical-conversion-factors-for-agricultural-commodities/ar/ # Installation ## Base installation Install from the main branch of a private repo on gitlab using an [authentication token](https://docs.gitlab.com/ee/user/project/deploy_tokens/index.html). The tokens will not be necessary once biotrade becomes publicly available. pip install git+https://<token>@gitlab.com/bioeconomy/forobs/biotrade.git@main To install a previous version specify the git tag, for example v0.0.1 pip install git+https://<token>@gitlab.com/bioeconomy/forobs/biotrade.git@v0.0.1 To install the latest development version, use also the `--upgrade` flag: pip install --upgrade --force-reinstall git+https://<token>@gitlab.com/bioeconomy/forobs/biotrade.git@dev ## Installation for contributors If you plan to contribute to the development of the biotrade package, clone the repository and tell python where it is located by adding it to your PYTHONPATH. You can do this by changing the environment variables or by adding the following line to your shell configuration file such as `.bash_aliases`: export PYTHONPATH="$HOME/repos/biotrade/":$PYTHONPATH Specify where you want to store the data by adding the following environment variable: export BIOTRADE_DATA="$HOME/repos/biotrade_data/" Dependencies are listed in the `install_requires` argument of [setup.py](setup.py). # Usage The biotrade package can download data from FAOSTAT and UN Comtrade and store it inside a database. By default it will use an SQLite database stored locally in the folder defined by the environment variable `BIOTRADE_DATA`. Alternatively, a PostGRESQL database can be used if a connection string is defined in the environment variable `BIOTRADE_DATABASE_URL`, for example by adding the following to your .bash_aliases or .bash_rc: export BIOTRADE_DATABASE_URL="postgresql://user@localhost/biotrade" Note that database queries are abstracted with [SQL Alchemy](https://www.sqlalchemy.org/) which is what makes it possible to use different database engines. SQLite is convenient for data analysis on laptops. PostGreSQL can be used on servers. ## FAOSTAT Faostat provides agriculture and forestry data on their website https://www.fao.org/faostat/en/#data/ The biotrade package has a `faostat.pump` object that loads a selection of datasets. The list of downloaded datasets is visible in `faostat.pump.datasets`. Column names and product descriptions are reformatted to snake case in a way that is convenient for analysis. The data is then stored into an SQLite database (or PostgreSQL). The following commands download and transfer the given datasets to the database: >>> from biotrade.faostat import faostat >>> faostat.pump.update(["crop_production", "crop_trade"]) >>> faostat.pump.update(["forestry_production", "forestry_trade", "forest_land"]) >>> faostat.pump.update(["food_balance"]) >>> faostat.pump.update(["land_use", "land_cover"]) List available datasets and metadata links: >>> faostat.pump.datasets >>> faostat.pump.metadata_link Once the data has been loaded into the database, you can query it. For example select crop production data for 2 countries >>> from biotrade.faostat import faostat >>> db = faostat.db_sqlite >>> cp2 = db.select(table="crop_production", >>> reporter=["Portugal", "Estonia"]) Select forestry trade flows data reported by all countries, with Austria as a partner country: >>> ft_aut = db.select(table="forestry_trade", >>> partner=["Austria"]) Select crop trade flows reported by the Netherlands where Brazil was a partner >>> ct_nel_bra = db.select(table="crop_trade", >>> reporter="Netherlands", >>> partner="Brazil") Select the mirror flows reported by Brazil, where the Netherlands was a partner >>> ct_bra_bel = db.select(table="crop_trade", >>> reporter="Brazil", >>> partner="Netherlands") Select land use and land cover data >>> lu = faostat.db.select("land_use") >>> lc = faostat.db.select("land_cover") ## Comtrade See the documentation of the various methods. As an example here is how to download trade data from the Comtrade API and return a data frame, for debugging purposes: >>> from biotrade.comtrade import comtrade >>> # Other sawnwood >>> swd99 = comtrade.pump.download(cc = "440799") >>> # Soy >>> soy = comtrade.pump.download(cc = "120190") Display information on column names used for renaming and dropping less important columns: >>> comtrade.column_names Get the list of products from the Comtrade API >>> hs = comtrade.pump.get_parameter_list("classificationHS.json") Get the list of reporter and partner countries >>> comtrade.pump.get_parameter_list("reporterAreas.json") >>> comtrade.pump.get_parameter_list("partnerAreas.json") # Metadata and configuration data ## Release dates FAOSTAT release dates are available at : https://fenixservices.fao.org/faostat/static/releasecalendar/Default.aspx ## Variable definitions and harmonization Column names and product descriptions are reformatted to snake case in a way that is convenient for analysis. See example below. - Variables are defined and compared between the data sources in a notebook called [definitions_and_harmonization](notebooks/definitions_and_harmonization.md) - Variable names are harmonized between the different sources using a mapping table defined in [biotrade/config_data/column_names.csv](https://gitlab.com/bioeconomy/biotrade/-/blob/main/biotrade/config_data/column_names.csv) See for example how the `product_code` column is called `PRODUCT_NC` in Eurostat Comext, `commodity_code` or `cmdcode` in UN Comtrade and `item_code` in FAOSTAT. - `snake_case` is the preferred way of naming files and variables in the code. This follows the R [tidyverse style guide for object names](https://style.tidyverse.org/syntax.html) and the python [PEP 8](https://www.python.org/dev/peps/pep-0008/#function-and-variable-names) style guide for function and variable names. To illustrate the advantage of using snake case for data exploration, compare the use of column names with space which have to be quoted. Python >>> df["Product Code"] >>> df.product_code R R> df["Product Code"] R> df$`Product Code` R> df$product_code ## Configuration data The `biotrade` package stores a small amount of configuration data such as country and product mapping tables and conversion coefficients in the `biotrade/config_data` folder. - FAOSTAT country and product mapping tables are accessible under the FAO Creative Commons 3.0 Intergovernmental Organization (IGO) licence mentionned in the FAO open access policy https://www.fao.org/3/I9461EN/I9461en.pdf - The Table "Extraction rates and value shares of major oil crops" comes from a JRC technical report: Cuypers, Dieter, Theo Geerken, Leen Gorissen, Arnoud Lust, Glen Peters, Jonas Karstensen, Sylvia Prieler, G. Fischer, Eva Hizsnyik, and Harrij Van Velthuizen. "The impact of EU consumption on deforestation: Comprehensive analysis of the impact of EU consumption on deforestation." (2013). https://ec.europa.eu/environment/forests/pdf/1.%20Report%20analysis%20of%20impact.pdf # Licence This software is licenced under the MIT licence. See the [LICENCE.md](LICENCE.md) file. # Similar projects - The python package [pandas-datareader](https://pydata.github.io/pandas-datareader/) - The R packages FAOSTAT and WDI # Tests This package uses pytest for unit testing. Run the test suite with pytest Run pytest with code coverage cd python_project_dir coverage run --source=. -m pytest Followed by coverage html To generate a report. These tests are run as part of the Continuous Integration. # Acknowledgements The authors would like to acknowledge ideas and feedback received from the following persons: Lucas Sinclair, Roberto Pilli, Mirco Migliavacca, Giovanni Bausano. Noemi Cazzaniga's package [eurostat](https://pypi.org/project/eurostat/) was taken as an inspiration to load Eurostat data from the bulk download repository.


نیازمندی

مقدار نام
- pandas
- sqlalchemy
- sqlalchemy-utils
- psycopg2
- requests
- fastapi
- uvicorn


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl biotrade-0.0.23:

    pip install biotrade-0.0.23.whl


نصب پکیج tar.gz biotrade-0.0.23:

    pip install biotrade-0.0.23.tar.gz