معرفی شرکت ها


biodive-0.1.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Discovery of k-mer sequences associated with high rates of sequence diversification.
ویژگی مقدار
سیستم عامل -
نام فایل biodive-0.1.2
نام biodive
نسخه کتابخانه 0.1.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jordi Abante
ایمیل نویسنده jordiabante@protonmail.com
آدرس صفحه اصلی https://github.com/jordiabante/biodive
آدرس اینترنتی https://pypi.org/project/biodive/
مجوز Apache License 2.0
# DIVE ## The algorithm DIVE is a purely statistical and completely annotation-free algorithm that proposes a new conceptual approach to discovering k-mer sequences associated with high rates of sequence diversification. DIVE is an efficient algorithm designed to identify sequences that may mechanistically cause sequence diversification (e.g., CRISPR repeat or transposon end) and the variable sequences near them, such as an insertion site. The identified sequences are assigned statistical scores for biologists to prioritize them and blasted against a series of FASTA files if desired. For more details, see [1]. ## Installation ### pip To install DIVE simply run the following pip command on the terminal: ```bash pip install biodive ``` To install blast within the same environment use the following command: ```python conda install -c bioconda blast ``` ### github To install DIVE directly from the repository simply run the following commands: ```python git clone https://github.com/jordiabante/biodive.git cd biodive conda create -n biodive python=3.6.8 conda activate biodive pip install -e . ``` To install blast within the same environment use the following command: ```python conda install -c bioconda blast ``` ## Usage To run a single-sample analysis on a compressed FASTQ/FASTA file use ```python # import bio module from biodive import bio # define input file and output dir outdir = "/path/to/outdir/" infile = "/path/to/fastq.gz" # or "/path/to/fasta.gz" # configure run config = bio.Config( outdir=outdir, # directory where output files will be stored kmer_size=25, # k-mer size used in the analysis annot_fasta=[] # array containing fasta files to use with blast ) # run analysis bio.biodive_single_sample_analysis(infile,config) ``` If `len(annot_fasta)>0`, then `blast` must be available on the path (see installation above). ## Output files ### Anchor sequences table A table with suffix `_anchors.txt.gz` is produced containing information about the interesting anchors detected (keys in old convention). The file contains the following columns: ```bash sequence id | assembly of {anchor1,anchor2,...} | max_c_up | max_n_up | max_efct_sz_up | max_efct_sz_qval_up | max_kmer_up | max_c_dn | max_n_dn | max_efct_sz_dn | max_efct_sz_qval_dn | max_kmer_dn | A% | C% | G% | T% | {anchor1,anchor2,...} ``` where `up/dn` indicate the position of the HVR with respect to the anchor and: * `max_c_*`: number of clusters formed for the maximizing anchor in the set in `*` direction. * `max_n_*`: corresponding number of target sequences observed. * `max_efct_sz_*`: corresponding effect size. * `max_efct_sz_qval_*`: corresponding adjusted p-value. * `max_kmer_*`: corresponding k-mer sequence. If the `len(annot_fasta)>0`, then two extra columns will be added to the previous table, for each direction (upstream, downstream) and for each FASTA in `annot_fasta`, containing the lowest e-value and the corresponding hit in the FASTA (sequence in FASTA resulting in lowest e-value), and the output will be stored in a new table with suffix `_anchors_annot.txt.gz` (NA will be assigned when e-value>1). For example, if we pass `annot_fasta=[fasta1]` we will see four extra columns: ```bash sequence id | ... | {anchor1,anchor2,...} | best_eval_up_fasta1 | best_hit_up_fasta1 | best_eval_dn_fasta1 | best_hit_dn_fasta1 ``` The intermediate XML files produced by blast are also stored for further analysis. ### Re-running annotation In some cases we might want to update the set of FASTA files we want to blast the results against. Say, for example, that we want to re-run the annotation with FASTA files `f1.fasta`, `f2.fasta`, and `f3.fasta`, with our output `SRRXYZ_anchors.txt.gz` (note the suffix is `_anchors.txt.gz`). In that case, we can use the following python code: ```python from biodive import bio anchorfile = "/path/to/SRRXYZ_anchors.txt.gz" annot_fasta = ["/path/to/annotations/f1.fa", "/path/to/annotations/f2.fa", "/path/to/annotations/f3.fa"] config = bio.Config(annot_fasta=annot_fasta) bio.biodive_single_sample_analysis_annotation(anchorfile,config) ``` ### Anchor sequences FASTA Three FASTA files are produced: 1. FASTA file with suffix `_assemb_anchors.fasta`: assembled anchor sequences. 2. FASTA file with suffix `_max_anchor_up.fasta`: maximizing anchor sequence upstream. 3. FASTA file with suffix `_max_anchor_dn.fasta`: maximizing anchor sequence downstream. Note that not all anchor sequences in 2 and 3 are necessarily significant. ### Target sequences table For each anchor in the set `{anchor1,anchor2,...}`, the target sequences are stored in a file with suffix `_targets.txt.gz` containing the following columns: ```bash anchor | upstream/downstream | distance | target | number of instances observed ``` ## References [1] J. Abante, P.L. Wang, J. Salzman. *DIVE: a reference-free statistical approach to diversity-generating & mobile genetic element discovery*, bioarxiv (2022).


نحوه نصب


نصب پکیج whl biodive-0.1.2:

    pip install biodive-0.1.2.whl


نصب پکیج tar.gz biodive-0.1.2:

    pip install biodive-0.1.2.tar.gz