معرفی شرکت ها


biocartograph-0.4.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Package was renamed from Biocarta v0.2.27 to Biocartograph because of an unintentional name clash
ویژگی مقدار
سیستم عامل -
نام فایل biocartograph-0.4.2
نام biocartograph
نسخه کتابخانه 0.4.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Richard Tjörnhammar
ایمیل نویسنده richard.tjornhammar@gmail.com
آدرس صفحه اصلی https://github.com/rictjo/biocarta
آدرس اینترنتی https://pypi.org/project/biocartograph/
مجوز -
# Biocartograph Creating Cartographic Representations of Biological Data [![DOI](https://zenodo.org/badge/578172132.svg)](https://zenodo.org/badge/latestdoi/578172132) # Installation ``` pip install biocartograph ``` # Example code ``` if __name__ == '__main__' : from biocartograph.quantification import full_mapping # adf = pd.read_csv('analytes.tsv',sep='\t',index_col=0) # # WE DO NOT WANT TO KEEP POTENTIALLY BAD ENTRIES adf = adf.iloc[ np.inf != np.abs( 1.0/np.std(adf.values,1) ) , np.inf != np.abs( 1.0/np.std(adf.values,0) ) ].copy() # # READING IN SAMPLE INFORMATION # THIS IS NEEDED FOR THE ALIGNED PCA TO WORK jdf = pd.read_csv('journal.tsv',sep='\t',index_col=0) jdf = jdf.loc[:,adf.columns.values] # alignment_label , sample_label = 'Disease' , None add_labels = ['Cell-line'] # cmd = 'max' # WRITE FILES AND MAKE NOISE bVerbose = True # CREATE AN OPTIMIZED REPRESENTATION bExtreme = True # WE MIGHT WANT SOME SPECIFIC INTERSECTIONS OF THE HIERARCHY n_clusters = [20,40,60,80,100] # USE ALL INFORMATION n_components = None umap_dimension = 2 n_neighbors = 20 local_connectivity = 20. transform_seed = 42 # print ( adf , jdf ) # # distance_type = 'correlation,spearman,absolute' # DONT USE THIS distance_type = 'covariation' # BECOMES CO-EXPRESSION BASED # results = full_mapping ( adf , jdf , bVerbose = bVerbose , bExtreme = bExtreme , n_clusters = n_clusters , n_components = n_components , distance_type = distance_type , umap_dimension = umap_dimension , umap_n_neighbors = n_neighbors , umap_local_connectivity = local_connectivity , umap_seed = transform_seed , hierarchy_cmd = cmd , add_labels = add_labels , alignment_label = alignment_label , sample_label = None ) # map_analytes = results[0] map_samples = results[1] hierarchy_analytes = results[2] hierarchy_samples = results[3] ``` or just call it using the default values: ``` import pandas as pd import numpy as np if __name__ == '__main__' : from biocartograph.quantification import full_mapping # adf = pd.read_csv('analytes.tsv',sep='\t',index_col=0) # adf = adf.iloc[ np.inf != np.abs( 1.0/np.std(adf.values,1) ) , np.inf != np.abs( 1.0/np.std(adf.values,0) ) ].copy() jdf = pd.read_csv('journal.tsv',sep='\t',index_col=0) jdf = jdf.loc[:,adf.columns.values] # alignment_label , sample_label = 'Disease' , None add_labels = ['Cell-line'] # results = full_mapping ( adf , jdf , bVerbose = True , n_clusters = [40,80,120] , add_labels = add_labels , alignment_label = alignment_label ) # map_analytes = results[0] map_samples = results[1] hierarchy_analytes = results[2] hierarchy_samples = results[3] ``` and plotting the information of the map analytes yields : [Cancer Disease Example](https://gist.github.com/rictjo/9cc40579914a51bffe7df442fec140f4) You can also run an alternative algorithm where the UMAP coordinates are employed directly for clustering by setting ``` results = full_mapping ( adf , jdf , bVerbose = True , bUseUmap = True , n_clusters = [40,80,120] , add_labels = add_labels , alignment_label = alignment_label ) ``` with the following [results](https://rictjo.github.io/?https://gist.githubusercontent.com/rictjo/8be5b5a9cc7f06ea7455d6c6ecc11ad8/raw/e00ea663a1218718f542744a939e0b05c604e8ab/index.html). Download the zip and open the html index: ``` chromium index.html ``` # Other generated solutions The clustering visualisations were created using the [Biocartograph](https://pypi.org/project/biocartograph/) and [hvplot](https://pypi.org/project/hvplot/) : What groupings corresponds to biomarker variance that describe them? Here are two visualisations of that: Diseases : [cancers](https://rictjo.github.io/?https://gist.githubusercontent.com/rictjo/870d8cc26ede12d00b7ae60109feebdc/raw/42beb98a82477e9c809f99d3498966fc564846b8/index.html) [biocartograph gfa Reactome enrichments](https://rictjo.github.io/?https://gist.githubusercontent.com/rictjo/afcca63470e5c9398372276f9ab43d42/raw/6e68e1da85fdb6d1b1aeec8c351831a3aad83e9d/index.html) [biocartograph gfa cluster enrichments](https://rictjo.github.io/?https://gist.githubusercontent.com/rictjo/5d83a85537839232f34edccde1cdc8e6/raw/40c49013a55213405a6b6609f9ab31c883668d5d/index.html) [biocartograph treemap cluster 61](https://rictjo.github.io/?https://gist.githubusercontent.com/rictjo/146ba66109c6554684dc387348d21a82/raw/a32f1e7c80cc6ebe53c33039e2adfb4512e3ce4b/index.html) Tissues : [tissues](https://rictjo.github.io/?https://gist.githubusercontent.com/rictjo/5e760b8c4fd3da4842813a4a0cea422c/raw/caa18f0391dc389fb8fc56ae8ac2bc4f7046a939/index.html) Single Cells: [single cells](https://rictjo.github.io/?https://gist.githubusercontent.com/rictjo/eb118f70c1d173f2e6d51f06779827d2/raw/c7fd997caf232df3d6bbbd80d607463812d461a1/index.html) [biocartograph gfa enrichment](https://rictjo.github.io/?https://gist.githubusercontent.com/rictjo/64ee6e4d2bacb31715ec46b65c9d441d/raw/a5d91114cc4ab784f865277264efe5f628ea018e/index.html) [biocartograph treemap cluster 47](https://rictjo.github.io/?https://gist.githubusercontent.com/rictjo/34b320ea503b79e29808b063a7266714/raw/eaf39e740eb8baaadf0d08faab521a152c282009/index.html) Blood Cells: [blood cells](https://rictjo.github.io/?https://gist.githubusercontent.com/rictjo/200153c58767d8b5162e66688ff4d669/raw/cfb74069d5cc9fc58e3558c753caaa60d4ba5e9b/index.html) [biocartograph gfa enrichment](https://rictjo.github.io/?https://gist.githubusercontent.com/rictjo/42ec85df088a0c40de339a78322594bd/raw/0725bea467b0c153298655e3a0555670a812e80f/index.html) [biocartograph treemap cluster 2](https://rictjo.github.io/?https://gist.githubusercontent.com/rictjo/d754528cf594087e509fe44fa071c178/raw/a78a82066e3d6aa2971aba2a64543a4018241372/index.html) [TCGA-BRCA](https://gdc.cancer.gov/) : Calculated using the biocartograph and a [TCGA derived data set](https://zenodo.org/record/3407557) with the results for [Breast Cancer mRNA-seq](https://rictjo.github.io/?https://gist.githubusercontent.com/rictjo/ea18ac756d5142ac98219d45960583d4/raw/7cba81abb8af89416d11a682a2e0d19a311c954f/index.html)


نحوه نصب


نصب پکیج whl biocartograph-0.4.2:

    pip install biocartograph-0.4.2.whl


نصب پکیج tar.gz biocartograph-0.4.2:

    pip install biocartograph-0.4.2.tar.gz