معرفی شرکت ها


bio-arc-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Antigen Receptor Classifier
ویژگی مقدار
سیستم عامل -
نام فایل bio-arc-0.1.1
نام bio-arc
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Austin Crinklaw
ایمیل نویسنده acrinklaw@lji.org
آدرس صفحه اصلی https://github.com/iedb/arc
آدرس اینترنتی https://pypi.org/project/bio-arc/
مجوز -
# ARC (Antigen Receptor Classifier) ### Authors: Austin Crinklaw, Swapnil Mahajan ## Requirements: - Linux OS - [HMMER3](http://hmmer.org/) - NCBI Blast+ - Python 3+ - Python packages: Pandas, BioPython ## Installation: We provide a Dockerfile for ease of use. ARC can also be downloaded through PyPI using the following pip command. ```shell pip install bio-arc ``` ### Testing Installation: A quick check for proper dependencies and successful installation can be performed by navigating to your pip package install directory (which can be located by executing ```pip show bio-arc```) and running the following command: ```shell python3 -m arc_test ``` Passing all unit-tests means that your system is configured properly and ready to classify some protein sequences. ## Usage: ### Input - A fasta format file with one or more protein sequences. ``` >1WBZ_A_alpha I H2-Kb MVPCTLLLLLAAALAPTQTRAGPHSLRYFVTAVSRPGLGEPRYMEVGYVDDTEFVRFDSDAENPRYEPRARWMEQEGPEYWERETQKAKGNEQSFRVDLRTLLGYYNQSKGGSHTIQVISGCEVGSDGRLLRGYQQYAYDGCDYIALNEDLKTWTAADMAALITKHKWEQAGEAERLRAYLEGTCVEWLRRYLKNGNATLLRTDSPKAHVTHHSRPEDKVTLRCWALGFYPADITLTWQLNGEELIQDMELVETRPAGDGTFQKWASVVVPLGKEQYYTCHVYHQGLPEPLTLRWEPPPSTVSNMATVAVLVVLGAAIVTGAVVAFVMKMRRRNTGGKGGDYALAPGSQTSDLSLPDCKVMVHDPHSLA >1WBZ_B_b2m I H2-Kb MARSVTLVFLVLVSLTGLYAIQKTPQIQVYSRHPPENGKPNILNCYVTQFHPPHIEIQMLKNGKKIPKVEMSDMSFSKDWSFYILAHTEFTPTETDTYACRVKHASMAEPKTVYWDRDM ``` ### Commands - Using Fasta file as an input: ```shell python -m ARC classify -i /path/to/input.fasta -o /path/to/output.csv ``` ### Output - Output file has 4 columns in CSV format. - First column named 'ID' is the description provoded in the fasta for each sequence. - Second column named 'class' is the assigned molecule class for each sequence. - e.g. MHC-I, MHC-II, BCR or TCR. - The third column named 'chain_type' is the assigned chain type for each sequence. - e.g. alpha, beta, heavy, lambda, kappa, scFv, TscFv or construct. These will also be labelled as V for variable domain or C for constant domain. - The fourth column named 'calc_mhc_allele' is the MHC allele identified using groove domain similarity to MRO alleles. | ID | class | chain_type | calc_mhc_allele| |---------------------------------------- |------- |----------- |---------------| | 1WBY_A_alpha I H2-Db | MHC-I | alpha V | | | 1WBY_B_b2m I H2-Db | | | | | 1HQR_A_alpha II HLA-DRA*01:01/DRB5*01:01| MHC-II | alpha C | HLA-DRA*01:01 | | 1HQR_B_beta II HLA-DRA*01:01/DRB5*01:01 | MHC-II | beta C | HLA-DRB5*01:01 | | 2CMR_H_heavy | BCR | heavy V | | | 2CMR_L_light | BCR | kappa C | | | 4RFO_L_light | BCR | lambda V | | | 3UZE_A_heavy | BCR | scFv | | | 1FYT_D_alpha | TCR | alpha V | | | 1FYT_E_beta | TCR | beta C | | | 3TF7_C_alpha | TCR | TscFv | | ## How it works: - BCR and TCR chains are identified using HMMs. A given protein sequence is searched against HMMs built using BCR and TCR chain sequences from IMGT. HMMER is used to align an input sequence to the HMMs. - MHC class I (alpha1-alpha2 domains) and MHC class I alpha and beta chain HMMs are downloaded from Pfam website. An input protein sequence is searched against these HMMs. A HMMER bit score threshold of 25 was used to identify MHC chain sequences. - To identify MHC alleles, groove domains (G-domains) are assigned based on the MRO repository. - IgNAR sequences are identified through querying against a custom blast database. ## References: Several methods for HMMER result parsing were sourced from ANARCI. [Dunbar J and Deane CM. ANARCI: Antigen receptor numbering and receptor classification. Bioinformatics (2016)](https://academic.oup.com/bioinformatics/article/32/2/298/1743894)


نیازمندی

مقدار نام
- biopython
- numpy
- pandas


نحوه نصب


نصب پکیج whl bio-arc-0.1.1:

    pip install bio-arc-0.1.1.whl


نصب پکیج tar.gz bio-arc-0.1.1:

    pip install bio-arc-0.1.1.tar.gz