معرفی شرکت ها


bigcommerce-0.23.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Connect Python applications with the Bigcommerce API
ویژگی مقدار
سیستم عامل -
نام فایل bigcommerce-0.23.2
نام bigcommerce
نسخه کتابخانه 0.23.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Bigcommerce Engineering
ایمیل نویسنده api@bigcommerce.com
آدرس صفحه اصلی https://github.com/bigcommerce/bigcommerce-api-python
آدرس اینترنتی https://pypi.org/project/bigcommerce/
مجوز MIT
Bigcommerce API Python Client ================================== |Build Status| |Package Version| Wrapper over the ``requests`` library for communicating with the Bigcommerce v2 API. Install with ``pip install bigcommerce`` or ``easy_install bigcommerce``. Tested with python 3.7-3.9, and only requires ``requests`` and ``pyjwt``. Usage ----- Connecting ~~~~~~~~~~ .. code:: python import bigcommerce # Public apps (OAuth) # Access_token is optional, if you don't have one you can use oauth_fetch_token (see below) api = bigcommerce.api.BigcommerceApi(client_id='', store_hash='', access_token='') # Private apps (Basic Auth) api = bigcommerce.api.BigcommerceApi(host='store.mybigcommerce.com', basic_auth=('username', 'api token')) ``BigcommerceApi`` also provides two helper methods for connection with OAuth2: - ``api.oauth_fetch_token(client_secret, code, context, scope, redirect_uri)`` -- fetches and returns an access token for your application. As a side effect, configures ``api`` to be ready for use. - ``BigcommerceApi.oauth_verify_payload(signed_payload, client_secret)`` -- Returns user data from a signed payload. Accessing and objects ~~~~~~~~~~~~~~~~~~~~~ The ``api`` object provides access to each API resource, each of which provides CRUD operations, depending on capabilities of the resource: .. code:: python api.Products.all() # GET /products (returns only a single page of products as a list) api.Products.iterall() # GET /products (autopaging generator that yields all # products from all pages product by product.) api.Products.get(1) # GET /products/1 api.Products.create(name='', type='', ...) # POST /products api.Products.get(1).update(price='199.90') # PUT /products/1 api.Products.delete_all() # DELETE /products api.Products.get(1).delete() # DELETE /products/1 api.Products.count() # GET /products/count The client provides full access to subresources, both as independent resources: :: api.ProductOptions.get(1) # GET /products/1/options api.ProductOptions.get(1, 2) # GET /products/1/options/2 And as helper methods on the parent resource: :: api.Products.get(1).options() # GET /products/1/options api.Products.get(1).options(1) # GET /products/1/options/1 These subresources implement CRUD methods in exactly the same way as regular resources: :: api.Products.get(1).options(1).delete() Filters ~~~~~~~ Filters can be applied to ``all`` methods as keyword arguments: .. code:: python customer = api.Customers.all(first_name='John', last_name='Smith')[0] orders = api.Orders.all(customer_id=customer.id) Error handling ~~~~~~~~~~~~~~ Minimal validation of data is performed by the client, instead deferring this to the server. A ``HttpException`` will be raised for any unusual status code: - 3xx status code: ``RedirectionException`` - 4xx status code: ``ClientRequestException`` - 5xx status code: ``ServerException`` The low level API ~~~~~~~~~~~~~~~~~ The high level API provided by ``bigcommerce.api.BigcommerceApi`` is a wrapper around a lower level api in ``bigcommerce.connection``. This can be accessed through ``api.connection``, and provides helper methods for get/post/put/delete operations. Accessing V3 API endpoints ~~~~~~~~~~~~~~~~~~~~~~~~~~ Although this library currently only supports high-level modeling for V2 API endpoints, it can be used to access V3 APIs using the OAuthConnection object: :: v3client = bigcommerce.connection.OAuthConnection(client_id=client_id, store_hash=store_hash, access_token=access_token, api_path='/stores/{}/v3/{}') v3client.get('/catalog/products', include_fields='name,sku', limit=5, page=1) Accessing GraphQL Admin API ~~~~~~~~~~~~~~~~~~~~~~~~~~~ There is a basic GraphQL client which allows you to submit GraphQL queries to the GraphQL Admin API. :: gql = bigcommerce.connection.GraphQLConnection( client_id=client_id, store_hash=store_hash, access_token=access_token ) # Make a basic query time_query_result = gql.query(""" query { system { time } } """) # Fetch the schema schema = gql.introspection_query() Managing Rate Limits ~~~~~~~~~~~~~~~~~~~~~~~~~~ You can optionally pass a ``rate_limiting_management`` object into ``bigcommerce.api.BigcommerceApi`` or ``bigcommerce.connection.OAuthConnection`` for automatic rate limiting management, ex: .. code:: python import bigcommerce api = bigcommerce.api.BigcommerceApi(client_id='', store_hash='', access_token='' rate_limiting_management= {'min_requests_remaining':2, 'wait':True, 'callback_function':None}) ``min_requests_remaining`` will determine the number of requests remaining in the rate limiting window which will invoke the management function ``wait`` determines whether or not we should automatically sleep until the end of the window ``callback_function`` is a function to run when the rate limiting management function fires. It will be invoked *after* the wait, if enabled. ``callback_args`` is an optional parameter which is a dictionary passed as an argument to the callback function. For simple applications which run API requests in serial (and aren't interacting with many different stores, or use a separate worker for each store) the simple sleep function may work well enough for most purposes. For more complex applications that may be parallelizing API requests on a given store, it's adviseable to write your own callback function for handling the rate limiting, use a ``min_requests_remaining`` higher than your concurrency, and not use the default wait function. Further documentation --------------------- Full documentation of the API is available on the Bigcommerce `Developer Portal <http://developer.bigcommerce.com>`__ To do ----- - Automatic enumeration of multiple page responses for subresources. .. |Build Status| image:: https://api.travis-ci.org/bigcommerce/bigcommerce-api-python.svg?branch=master :target: https://travis-ci.org/bigcommerce/bigcommerce-api-python .. |Package Version| image:: https://badge.fury.io/py/bigcommerce.svg :target: https://pypi.python.org/pypi/bigcommerce


نیازمندی

مقدار نام
>=2.25.1 requests
>=2.0.1 pyjwt


نحوه نصب


نصب پکیج whl bigcommerce-0.23.2:

    pip install bigcommerce-0.23.2.whl


نصب پکیج tar.gz bigcommerce-0.23.2:

    pip install bigcommerce-0.23.2.tar.gz