معرفی شرکت ها


betanegbinfit-0.74


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

-
ویژگی مقدار
سیستم عامل OS Independent
نام فایل betanegbinfit-0.74
نام betanegbinfit
نسخه کتابخانه 0.74
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/betanegbinfit/
مجوز -
# BetaNegBinFit ## A very brief manual The cornerstones (or rather, to be more precise, parts that are supposed to be used by a user, rather than a developer) of **BetaNegBinFit** are *model* classes that do model certain distribution and do some heavy lifting. At the moment, there are 2 models available: * `ModelMixture` -- a model that models counts at a certain slice as a mixture of 2 binomial-alike distributions; * `ModelLine` -- this can be thought of as a composition of a lot of `ModelMixture`s (their number is equal to a number of slices), but they are linked via constraining *r* parameter to a linear function of slice. Both models can use either negative-binomial or beta-negative-binomial distribution (see `model` argument of their `__init__` methods). ### Use example: *ModelMixture" Running `ModelMixture` is as simple as: ``` from betanegbinfit import ModelMixture m = ModelMixture(bad=2, left=4) res = m.fit(some_slice) ``` Then, you can inspect parameters through examining the `res` variable which is a fairly self-explanotory `dict`. #### Some_slice? Assume that we want to get slice of refs with fix__c = 23 for BAD=3 for our *chipseq*-dataset, `some_slice`. We suggest doing it this way: ``` data_folder = 'Data' data_file = os.path.join(data_folder, 'chipseq.tsv') bad = 3 fix_c = 23 dfo = pd.read_csv(data_file, sep='\t') dfo = dfo[dfo.BAD == bad] refs = dfo.REF_COUNTS alts = dfo.ALT_COUNTS some_slice = refs[alts == c] ``` ### Use example: *ModelLine* `ModelLine` is ran similarly, but this time we pass whole data to the `fit` method instead of a single slice: ``` from betanegbinfit import ModelLine m = ModelLine(bad=2, left=4) res = m.fit(data) ``` We advise that data is a n x 2 numpy array rather than pandas DataFrame (where the 1st column stands for reference allele counts and the 2nd for alt counts), however if that is not the case, `ModelLine` will try to guess ref count, alt count and BAD columns from the dataframe. ### Statistics `stats` module has a number of functions that can be of interest to a prospective user: 1. `rmsea` - calculate RMSEA goodness-of-fit statistic; 2. `calc_pvalues` - calculate p-value for each of snp; 3. `calc_eff_sizes` - calculate "effect sizes" for each of snp; 4. `calc_adjusted_loglik` - calcualte adjusted loglikelihood: adjusted loglikelihood is just a likelihood correct for its parameters geometry. It is done vis subtracting logdet of Fisher information matrix. #### Automatic everything & multiprocessing However, instead of manually creating instances of model classes and working through **BetaNegBinFit** methods, it might be much more preferential to run a single to-use function. The package has `utils.run` function that is very easy to use and also does parallelization. See *test.py* for a real (and a very short one) example. Most importantly, it produces tabular data that can be easily analyzed in a downstream analysis. Also, it has plenty of arguments that can be taked advantage of to do some preprocessing which might be crucial for some datasets. **Please note, that all functions have plenty of optional arguments and they all are documented, so please consider reading through `help(function of interest)`.** ### A note on performance As far as we are concerned, **BetaNegBinFit** should work within a manageable amounts of time. For insance, when `ModelLine` with `model='BetaNB'` ran against *chipseq.tsv* dataset, it finishes in 6 minutes when ran at Ryzen 5600U. It does so under 2 minutes with `model='NB'`.


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl betanegbinfit-0.74:

    pip install betanegbinfit-0.74.whl


نصب پکیج tar.gz betanegbinfit-0.74:

    pip install betanegbinfit-0.74.tar.gz