معرفی شرکت ها


beta-rec-0.3.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Beta-RecSys: Build, Evaluate and Tune Automated Recommender Systems
ویژگی مقدار
سیستم عامل -
نام فایل beta-rec-0.3.2
نام beta-rec
نسخه کتابخانه 0.3.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده recsys.beta@gmail.com
آدرس صفحه اصلی https://github.com/beta-team/beta-recsys
آدرس اینترنتی https://pypi.org/project/beta-rec/
مجوز -
|**[Installation](#installation)** | **[Quick Start](#installation)** | **[Documentation](https://beta-recsys.readthedocs.io/)** | **[Contributing](#contributing)** | **[Getting help](https://github.com/beta-team/community/blob/master/beta_recsys/README.md)** | **[Citation](#Citation)**| <p align="center"> <a href="https://beta-recsys.readthedocs.io/"> <img src="https://beta-recsys.readthedocs.io/en/latest/_static/Logo.svg" alt="Accord Project Logo" width="400"> </a> </p> [![PyPI version](https://badge.fury.io/py/beta-rec.svg)](https://badge.fury.io/py/beta-rec) [![Code Coverage](https://codecov.io/gh/leungyukshing/beta-recsys/branch/develop/graph/badge.svg)](https://codecov.io/gh/leungyukshing/beta-recsys) [![CI](https://github.com/beta-team/beta-recsys/workflows/CI/badge.svg?branch=master)](https://github.com/beta-team/beta-recsys/actions?query=workflow%3ACI) [![Documentation Status](https://readthedocs.org/projects/beta-recsys/badge/?version=stable)](http://beta-recsys.readthedocs.io/en/stable/) [![GitHub](https://img.shields.io/badge/issue_tracking-github-blue.svg)](https://github.com/beta-team/beta-recsys/issues) [![Slack Status](https://img.shields.io/badge/Join-Slack-purple)](https://join.slack.com/t/beta-recsys/shared_invite/zt-iwmlfb0g-yxeyzb0U9pZfFN~A4mrKpA) Beta-RecSys an open source project for Building, Evaluating and Tuning Automated Recommender Systems. Beta-RecSys aims to provide a practical data toolkit for building end-to-end recommendation systems in a standardized way. It provided means for dataset preparation and splitting using common strategies, a generalized model engine for implementing recommender models using Pytorch with a lot of models available out-of-the-box, as well as a unified training, validation, tuning and testing pipeline. Furthermore, Beta-RecSys is designed to be both modular and extensible, enabling new models to be quickly added to the framework. It is deployable in a wide range of environments via pre-built docker containers and supports distributed parameter tuning using [Ray](https://github.com/ray-project/ray). ## Installation ### conda If you use conda, you can install it with: ```shell conda install beta-rec ``` ### pip If you use pip, you can install it with: ```shell pip install beta-rec ``` ### Docker We also provide docker image for you to run this project on any platform. You can use the image with: 1. Pull image from Docker Hub ``` docker pull betarecsys/beta-recsys:latest ``` 2. Start a docker container with this image (Make sure the port 8888 is available on you local machine, or you can change the port in the command) ``` docker run -ti --name beta-recsys -p 8888:8888 -d beta-recsys ``` 3. Open Jupyter on a brower with this URL: ``` http://localhost:8888 ``` 4. Enter `root` as the password for the notebook. ## Quick Start ### Downloading and Splitting Datasets ```python from beta_rec.datasets.movielens import Movielens_100k from beta_rec.data import BaseData dataset = Movielens_100k() split_dataset = dataset.load_leave_one_out(n_test=1) data = BaseData(split_dataset) ``` ### Training model with MatrixFactorization ```python config = { "config_file":"./configs/mf_default.json" } from beta_rec.recommenders import MatrixFactorization model = MatrixFactorization(config) model.train(data) result = model.test(data.test[0]) ``` where a default config josn file [./configs/mf_default.json](./configs/mf_default.json) will be loaded for traning the model. ### Tuning Model Hyper-parameters ```python config = { "config_file":"../configs/mf_default.json", "tune":True, } tune_result = model.train(data) ``` ### Experiment with multiple models ```python from beta_rec.recommenders import MatrixFactorization from beta_rec.experiment.experiment import Experiment # Initialise recommenders with their default configuration file config = { "config_file":"configs/mf_default.json" } mf_1 = MatrixFactorization(config) mf_2 = MatrixFactorization(config) # Run experiments of the recommenders on the selected dataset Experiment( datasets=[data], models=[mf_1, mf_2], ).run() ``` where the model will tune the hyper-parameters according to the specifed tuning scheme (e.g. [the default for MF](https://github.com/mengzaiqiao/beta-recsys/blob/master/configs/mf_default.json#L46)). ## Models The following is a list of recommender models currently available in the repository, or to be implemented soon. ### General Models |Model|Paper|Colab| |------|------|------| |MF|[Neural Collaborative Filtering vs. Matrix Factorization Revisited](https://arxiv.org/abs/2005.09683), arXiv’ 2020 |[![Example In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1tJX4ZTtNp6tdGer-jUQ_ZZSIf9J2MB7G?usp=sharing)| |GMF|Generalized Matrix Factorization, in [Neural Collaborative Filtering](https://arxiv.org/abs/1708.05031), WWW 2017|| |MLP|Multi-Layer Perceptron, in [Neural Collaborative Filtering](https://arxiv.org/abs/1708.05031), WWW 2017|| |NCF|[Neural Collaborative Filtering](https://arxiv.org/abs/1708.05031), WWW 2017|[![Example In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1-3zfUNEexpB5eoTIwDfIqgMNFLQet2vV?usp=sharing)| |CMN|[Collaborative memory network for recommendation systems](https://dl.acm.org/doi/abs/10.1145/3209978.3209991), SIGIR 2018|| |NGCF|[Neural graph collaborative filtering](https://dl.acm.org/doi/abs/10.1145/3331184.3331267), SIGIR 2019|[![Example In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1s5fEy47XUMDdCV5TEs2O3mArL4hY9pyi?usp=sharing)| |LightGCN|[**LightGCN**: Simplifying and Powering Graph Convolution Network for Recommendation](https://arxiv.org/abs/2002.02126), SIGIR 2020|[![Example In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/118SkZ3mpG6gBzOgeVTs8_jVYBd4k8pOa?usp=sharing)| |LCF|[Graph Convolutional Network for Recommendation with Low-pass Collaborative Filters](https://arxiv.org/abs/2006.15516)|| |VAECF|[Variational autoencoders for collaborative filtering](https://dl.acm.org/doi/abs/10.1145/3178876.3186150), WWW 2018|| ### Sequential Models |Model|Paper|Colab| |------|------|------| |NARM|[Neural Attentive Session-based Recommendation](https://arxiv.org/abs/1711.04725), CIKM 2017|| |Caser|[Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding](https://dl.acm.org/doi/abs/10.1145/3159652.3159656), WSDM 2018|| |GRU4Rec|[Session-based recommendations with recurrent neural networks](https://arxiv.org/abs/1511.06939), ICLR 2016|| |SasRec|[**Self**-**attentive sequential recommendation**](https://ieeexplore.ieee.org/abstract/document/8594844/?casa_token=RINDZUuHnwoAAAAA:XBjSlh6-KqBjgCY1AWwgXyZqHtT_8zAPBMKjLIUJMlf6Ex9j55gG2UAsrRtG10roMUd6-_w3Jw). ICDM 2018|[![Example In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1BbUuv6yZAdcQzvcmawnGnvbuZ5thipup?usp=sharing)| |MARank|[Multi-Order Attentive Ranking Model for Sequential Recommendation](https://ojs.aaai.org//index.php/AAAI/article/view/4516), AAAI 2019|| |NextItnet|[A Simple Convolutional Generative Network for Next Item Recommendation](https://dl.acm.org/doi/abs/10.1145/3289600.3290975), WSDM 2019|| |BERT4Rec|[BERT4Rec: **Sequential recommendation** with **bidirectional encoder representations** from **transformer**](https://dl.acm.org/doi/abs/10.1145/3357384.3357895), CIKM 2019|| |TiSASRec| Time Interval Aware Self-Attention for Sequential Recommendation. WSDM'20|| ### Recommendation Models with Auxiliary information ### Baskets/Sessions |Model|Paper|Colab| |------|------|------| |Triple2vec|[Representing and recommending shopping baskets with complementarity, compatibility and loyalty](https://dl.acm.org/doi/abs/10.1145/3269206.3271786), CIKM 2018|[![Example In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/10utuVzOjsLzj2XqWUxXgZrqgEe5azv3B?usp=sharing)| |VBCAR|[Variational Bayesian Context-aware Representation for Grocery Recommendation](https://arxiv.org/abs/1909.07705), arXiv’ 2019|[![Example In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1gOW4-TVZ-Ub1fIQROcwRh1dziI86JshZ?usp=sharing)| |T-VBR||| ### Knowledge Graph - [ ] KGAT: [Kgat: Knowledge graph attention network for recommendation](https://dl.acm.org/doi/abs/10.1145/3292500.3330989). SIGKDD 2019 > If you want your model to be implemented by our maintenance team (or by yourself), please submit an issue following our community [instruction]((#contributing)). ## Recent Changing Logs ---> See [version release](https://github.com/beta-team/beta-recsys/releases). ## Contributing This project welcomes contributions and suggestions. Please make sure to read the [Contributing Guide](https://github.com/beta-team/community/blob/master/beta_recsys/README.md) before creating a pull request. ### Community meeting - Meeting time: Saturday (1:30 – 2:30pm [UTC +0](https://24timezones.com/time-zone/utc#gref)) / (9:30 – 10:30pm [UTC +8](https://24timezones.com/time-zone/utc+8#gref)) [![Add Event](https://img.shields.io/badge/Add-Event-blue)](https://github.com/beta-team/community/releases/download/meeting/bi-weekly.meeting.ics) - Meeting minutes: [notes](https://github.com/beta-team/community/tree/master/beta_recsys/meeting%20minutes) - Meeting recordings: [recording links]: Can be found in each [meeting note](https://github.com/beta-team/community/tree/master/beta_recsys/meeting%20minutes). ### Discussion channels - Slack: [![Slack Status](https://img.shields.io/badge/Join-Slack-purple)](https://join.slack.com/t/beta-recsys/shared_invite/zt-iwmlfb0g-yxeyzb0U9pZfFN~A4mrKpA) - Mailing list: TBC ## Citation If you use Beta-RecSys in you research, we would appreciate citations to the following paper: ``` @inproceedings{meng2020beta, title={BETA-Rec: Build, Evaluate and Tune Automated Recommender Systems}, author={Meng, Zaiqiao and McCreadie, Richard and Macdonald, Craig and Ounis, Iadh and Liu, Siwei and Wu, Yaxiong and Wang, Xi and Liang, Shangsong and Liang, Yucheng and Zeng, Guangtao and others}, booktitle={Fourteenth ACM Conference on Recommender Systems}, pages={588--590}, year={2020} } ```


نیازمندی

مقدار نام
==2.24.0 requests
>=2.1 tensorboardX
==1.0.1 ray
>=1.7.1 torch
>=1.16.0 numpy
>=4.45.0 tqdm
==1.0.3 pandas
==4.0.1 mock
>=1.4 scipy
>=0.22 scikit-learn
==1.4.0 gputil
~=0.4.0 aiofiles
>=3.7.4 aiohttp
~=1.3.3 nest-asyncio
~=5.0.0 py-cpuinfo
~=5.7.0 psutil
~=0.8.7 tabulate
~=0.6 py7zr
~=3.3.1 rstcheck
==2.5.0 munch


زبان مورد نیاز

مقدار نام
>=3.6.9 Python


نحوه نصب


نصب پکیج whl beta-rec-0.3.2:

    pip install beta-rec-0.3.2.whl


نصب پکیج tar.gz beta-rec-0.3.2:

    pip install beta-rec-0.3.2.tar.gz