معرفی شرکت ها


bert-for-tf2-mod-0.14.10


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A TensorFlow 2.x Keras implementation of BERT.
ویژگی مقدار
سیستم عامل -
نام فایل bert-for-tf2-mod-0.14.10
نام bert-for-tf2-mod
نسخه کتابخانه 0.14.10
نگهدارنده []
ایمیل نگهدارنده []
نویسنده kpe
ایمیل نویسنده kpe.git@gmailbox.org
آدرس صفحه اصلی https://github.com/kpe/bert-for-tf2/
آدرس اینترنتی https://pypi.org/project/bert-for-tf2-mod/
مجوز MIT
BERT for TensorFlow v2 ====================== |Build Status| |Coverage Status| |Version Status| |Python Versions| |Downloads| This repo contains a `TensorFlow 2.0`_ `Keras`_ implementation of `google-research/bert`_ with support for loading of the original `pre-trained weights`_, and producing activations **numerically identical** to the one calculated by the original model. `ALBERT`_ and `adapter-BERT`_ are also supported by setting the corresponding configuration parameters (``shared_layer=True``, ``embedding_size`` for `ALBERT`_ and ``adapter_size`` for `adapter-BERT`_). Setting both will result in an adapter-ALBERT by sharing the BERT parameters across all layers while adapting every layer with layer specific adapter. The implementation is build from scratch using only basic tensorflow operations, following the code in `google-research/bert/modeling.py`_ (but skipping dead code and applying some simplifications). It also utilizes `kpe/params-flow`_ to reduce common Keras boilerplate code (related to passing model and layer configuration arguments). `bert-for-tf2`_ should work with both `TensorFlow 2.0`_ and `TensorFlow 1.14`_ or newer. NEWS ---- - **30.Jul.2020** - `VERBOSE=0` env variable for suppressing stdout output. - **06.Apr.2020** - using latest ``py-params`` introducing ``WithParams`` base for ``Layer`` and ``Model``. See news in `kpe/py-params`_ for how to update (``_construct()`` signature has change and requires calling ``super().__construct()``). - **06.Jan.2020** - support for loading the tar format weights from `google-research/ALBERT`. - **18.Nov.2019** - ALBERT tokenization added (make sure to import as ``from bert import albert_tokenization`` or ``from bert import bert_tokenization``). - **08.Nov.2019** - using v2 per default when loading the `TFHub/albert`_ weights of `google-research/ALBERT`_. - **05.Nov.2019** - minor ALBERT word embeddings refactoring (``word_embeddings_2`` -> ``word_embeddings_projector``) and related parameter freezing fixes. - **04.Nov.2019** - support for extra (task specific) token embeddings using negative token ids. - **29.Oct.2019** - support for loading of the pre-trained ALBERT weights released by `google-research/ALBERT`_ at `TFHub/albert`_. - **11.Oct.2019** - support for loading of the pre-trained ALBERT weights released by `brightmart/albert_zh ALBERT for Chinese`_. - **10.Oct.2019** - support for `ALBERT`_ through the ``shared_layer=True`` and ``embedding_size=128`` params. - **03.Sep.2019** - walkthrough on fine tuning with adapter-BERT and storing the fine tuned fraction of the weights in a separate checkpoint (see ``tests/test_adapter_finetune.py``). - **02.Sep.2019** - support for extending the token type embeddings of a pre-trained model by returning the mismatched weights in ``load_stock_weights()`` (see ``tests/test_extend_segments.py``). - **25.Jul.2019** - there are now two colab notebooks under ``examples/`` showing how to fine-tune an IMDB Movie Reviews sentiment classifier from pre-trained BERT weights using an `adapter-BERT`_ model architecture on a GPU or TPU in Google Colab. - **28.Jun.2019** - v.0.3.0 supports `adapter-BERT`_ (`google-research/adapter-bert`_) for "Parameter-Efficient Transfer Learning for NLP", i.e. fine-tuning small overlay adapter layers over BERT's transformer encoders without changing the frozen BERT weights. LICENSE ------- MIT. See `License File <https://github.com/kpe/bert-for-tf2/blob/master/LICENSE.txt>`_. Install ------- ``bert-for-tf2`` is on the Python Package Index (PyPI): :: pip install bert-for-tf2 Usage ----- BERT in `bert-for-tf2` is implemented as a Keras layer. You could instantiate it like this: .. code:: python from bert import BertModelLayer l_bert = BertModelLayer(**BertModelLayer.Params( vocab_size = 16000, # embedding params use_token_type = True, use_position_embeddings = True, token_type_vocab_size = 2, num_layers = 12, # transformer encoder params hidden_size = 768, hidden_dropout = 0.1, intermediate_size = 4*768, intermediate_activation = "gelu", adapter_size = None, # see arXiv:1902.00751 (adapter-BERT) shared_layer = False, # True for ALBERT (arXiv:1909.11942) embedding_size = None, # None for BERT, wordpiece embedding size for ALBERT name = "bert" # any other Keras layer params )) or by using the ``bert_config.json`` from a `pre-trained google model`_: .. code:: python import bert model_dir = ".models/uncased_L-12_H-768_A-12" bert_params = bert.params_from_pretrained_ckpt(model_dir) l_bert = bert.BertModelLayer.from_params(bert_params, name="bert") now you can use the BERT layer in your Keras model like this: .. code:: python from tensorflow import keras max_seq_len = 128 l_input_ids = keras.layers.Input(shape=(max_seq_len,), dtype='int32') l_token_type_ids = keras.layers.Input(shape=(max_seq_len,), dtype='int32') # using the default token_type/segment id 0 output = l_bert(l_input_ids) # output: [batch_size, max_seq_len, hidden_size] model = keras.Model(inputs=l_input_ids, outputs=output) model.build(input_shape=(None, max_seq_len)) # provide a custom token_type/segment id as a layer input output = l_bert([l_input_ids, l_token_type_ids]) # [batch_size, max_seq_len, hidden_size] model = keras.Model(inputs=[l_input_ids, l_token_type_ids], outputs=output) model.build(input_shape=[(None, max_seq_len), (None, max_seq_len)]) if you choose to use `adapter-BERT`_ by setting the `adapter_size` parameter, you would also like to freeze all the original BERT layers by calling: .. code:: python l_bert.apply_adapter_freeze() and once the model has been build or compiled, the original pre-trained weights can be loaded in the BERT layer: .. code:: python import bert bert_ckpt_file = os.path.join(model_dir, "bert_model.ckpt") bert.load_stock_weights(l_bert, bert_ckpt_file) **N.B.** see `tests/test_bert_activations.py`_ for a complete example. FAQ --- 0. In all the examlpes bellow, **please note** the line: .. code:: python # use in a Keras Model here, and call model.build() for a quick test, you can replace it with something like: .. code:: python model = keras.models.Sequential([ keras.layers.InputLayer(input_shape=(128,)), l_bert, keras.layers.Lambda(lambda x: x[:, 0, :]), keras.layers.Dense(2) ]) model.build(input_shape=(None, 128)) 1. How to use BERT with the `google-research/bert`_ pre-trained weights? .. code:: python model_name = "uncased_L-12_H-768_A-12" model_dir = bert.fetch_google_bert_model(model_name, ".models") model_ckpt = os.path.join(model_dir, "bert_model.ckpt") bert_params = bert.params_from_pretrained_ckpt(model_dir) l_bert = bert.BertModelLayer.from_params(bert_params, name="bert") # use in a Keras Model here, and call model.build() bert.load_bert_weights(l_bert, model_ckpt) # should be called after model.build() 2. How to use ALBERT with the `google-research/ALBERT`_ pre-trained weights (fetching from TFHub)? see `tests/nonci/test_load_pretrained_weights.py <https://github.com/kpe/bert-for-tf2/blob/master/tests/nonci/test_load_pretrained_weights.py>`_: .. code:: python model_name = "albert_base" model_dir = bert.fetch_tfhub_albert_model(model_name, ".models") model_params = bert.albert_params(model_name) l_bert = bert.BertModelLayer.from_params(model_params, name="albert") # use in a Keras Model here, and call model.build() bert.load_albert_weights(l_bert, albert_dir) # should be called after model.build() 3. How to use ALBERT with the `google-research/ALBERT`_ pre-trained weights (non TFHub)? see `tests/nonci/test_load_pretrained_weights.py <https://github.com/kpe/bert-for-tf2/blob/master/tests/nonci/test_load_pretrained_weights.py>`_: .. code:: python model_name = "albert_base_v2" model_dir = bert.fetch_google_albert_model(model_name, ".models") model_ckpt = os.path.join(albert_dir, "model.ckpt-best") model_params = bert.albert_params(model_dir) l_bert = bert.BertModelLayer.from_params(model_params, name="albert") # use in a Keras Model here, and call model.build() bert.load_albert_weights(l_bert, model_ckpt) # should be called after model.build() 4. How to use ALBERT with the `brightmart/albert_zh`_ pre-trained weights? see `tests/nonci/test_albert.py <https://github.com/kpe/bert-for-tf2/blob/master/tests/nonci/test_albert.py>`_: .. code:: python model_name = "albert_base" model_dir = bert.fetch_brightmart_albert_model(model_name, ".models") model_ckpt = os.path.join(model_dir, "albert_model.ckpt") bert_params = bert.params_from_pretrained_ckpt(model_dir) l_bert = bert.BertModelLayer.from_params(bert_params, name="bert") # use in a Keras Model here, and call model.build() bert.load_albert_weights(l_bert, model_ckpt) # should be called after model.build() 5. How to tokenize the input for the `google-research/bert`_ models? .. code:: python do_lower_case = not (model_name.find("cased") == 0 or model_name.find("multi_cased") == 0) bert.bert_tokenization.validate_case_matches_checkpoint(do_lower_case, model_ckpt) vocab_file = os.path.join(model_dir, "vocab.txt") tokenizer = bert.bert_tokenization.FullTokenizer(vocab_file, do_lower_case) tokens = tokenizer.tokenize("Hello, BERT-World!") token_ids = tokenizer.convert_tokens_to_ids(tokens) 6. How to tokenize the input for `brightmart/albert_zh`? .. code:: python import params_flow pf # fetch the vocab file albert_zh_vocab_url = "https://raw.githubusercontent.com/brightmart/albert_zh/master/albert_config/vocab.txt" vocab_file = pf.utils.fetch_url(albert_zh_vocab_url, model_dir) tokenizer = bert.albert_tokenization.FullTokenizer(vocab_file) tokens = tokenizer.tokenize("你好世界") token_ids = tokenizer.convert_tokens_to_ids(tokens) 7. How to tokenize the input for the `google-research/ALBERT`_ models? .. code:: python import sentencepiece as spm spm_model = os.path.join(model_dir, "assets", "30k-clean.model") sp = spm.SentencePieceProcessor() sp.load(spm_model) do_lower_case = True processed_text = bert.albert_tokenization.preprocess_text("Hello, World!", lower=do_lower_case) token_ids = bert.albert_tokenization.encode_ids(sp, processed_text) 8. How to tokenize the input for the Chinese `google-research/ALBERT`_ models? .. code:: python import bert vocab_file = os.path.join(model_dir, "vocab.txt") tokenizer = bert.albert_tokenization.FullTokenizer(vocab_file=vocab_file) tokens = tokenizer.tokenize(u"你好世界") token_ids = tokenizer.convert_tokens_to_ids(tokens) Resources --------- - `BERT`_ - BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding - `adapter-BERT`_ - adapter-BERT: Parameter-Efficient Transfer Learning for NLP - `ALBERT`_ - ALBERT: A Lite BERT for Self-Supervised Learning of Language Representations - `google-research/bert`_ - the original `BERT`_ implementation - `google-research/ALBERT`_ - the original `ALBERT`_ implementation by Google - `google-research/albert(old)`_ - the old location of the original `ALBERT`_ implementation by Google - `brightmart/albert_zh`_ - pre-trained `ALBERT`_ weights for Chinese - `kpe/params-flow`_ - A Keras coding style for reducing `Keras`_ boilerplate code in custom layers by utilizing `kpe/py-params`_ .. _`kpe/params-flow`: https://github.com/kpe/params-flow .. _`kpe/py-params`: https://github.com/kpe/py-params .. _`bert-for-tf2`: https://github.com/kpe/bert-for-tf2 .. _`Keras`: https://keras.io .. _`pre-trained weights`: https://github.com/google-research/bert#pre-trained-models .. _`google-research/bert`: https://github.com/google-research/bert .. _`google-research/bert/modeling.py`: https://github.com/google-research/bert/blob/master/modeling.py .. _`BERT`: https://arxiv.org/abs/1810.04805 .. _`pre-trained google model`: https://github.com/google-research/bert .. _`tests/test_bert_activations.py`: https://github.com/kpe/bert-for-tf2/blob/master/tests/test_compare_activations.py .. _`TensorFlow 2.0`: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf .. _`TensorFlow 1.14`: https://www.tensorflow.org/versions/r1.14/api_docs/python/tf .. _`google-research/adapter-bert`: https://github.com/google-research/adapter-bert/ .. _`adapter-BERT`: https://arxiv.org/abs/1902.00751 .. _`ALBERT`: https://arxiv.org/abs/1909.11942 .. _`brightmart/albert_zh ALBERT for Chinese`: https://github.com/brightmart/albert_zh .. _`brightmart/albert_zh`: https://github.com/brightmart/albert_zh .. _`google ALBERT weights`: https://github.com/google-research/google-research/tree/master/albert .. _`google-research/albert(old)`: https://github.com/google-research/google-research/tree/master/albert .. _`google-research/ALBERT`: https://github.com/google-research/ALBERT .. _`TFHub/albert`: https://tfhub.dev/google/albert_base/2 .. |Build Status| image:: https://travis-ci.com/kpe/bert-for-tf2.svg?branch=master :target: https://travis-ci.com/kpe/bert-for-tf2 .. |Coverage Status| image:: https://coveralls.io/repos/kpe/bert-for-tf2/badge.svg?branch=master :target: https://coveralls.io/r/kpe/bert-for-tf2?branch=master .. |Version Status| image:: https://badge.fury.io/py/bert-for-tf2.svg :target: https://badge.fury.io/py/bert-for-tf2 .. |Python Versions| image:: https://img.shields.io/pypi/pyversions/bert-for-tf2.svg .. |Downloads| image:: https://img.shields.io/pypi/dm/bert-for-tf2.svg .. |Twitter| image:: https://img.shields.io/twitter/follow/siddhadev?logo=twitter&label=&style= :target: https://twitter.com/intent/user?screen_name=siddhadev


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl bert-for-tf2-mod-0.14.10:

    pip install bert-for-tf2-mod-0.14.10.whl


نصب پکیج tar.gz bert-for-tf2-mod-0.14.10:

    pip install bert-for-tf2-mod-0.14.10.tar.gz