معرفی شرکت ها


benfordslaw-analysis-1.0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Use this package to analyse your data with Benford's law
ویژگی مقدار
سیستم عامل -
نام فایل benfordslaw-analysis-1.0.3
نام benfordslaw-analysis
نسخه کتابخانه 1.0.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jurjen de Jong
ایمیل نویسنده jurjendejong93@gmail.com
آدرس صفحه اصلی https://github.com/jurjen93/Benfords_law
آدرس اینترنتی https://pypi.org/project/benfordslaw-analysis/
مجوز LICENSE.txt
# Benford's law analysis Benford's law is a digit-law, which states that the distribution of seperate digits in numbers follow a specific frequency. This specific frequency is seen in many numerical datasets, as discovered by Simon Newcomb and Frank Benford. You can find on [wikipedia] more information about this mysterious law. Benford's law might be helpful to detect [fraud], do [science], or just investigate the [quality of data]. #### Installation By ```pip install benfordslaw-analysis``` you will install the package. #### Usage Now you can do ```from benfordslaw_analysis.analysis import Analysis```. You have now imported the class ```Analysis```. Now you can play around with your data and test if Benford's law is hidden in your data, by inserting a list or a pandas series into the class object. For example, make a plot with Benford's law versus random data with: ``` from benfordslaw_analysis.analysis import Analysis from random import uniform random_data = [uniform(-10, 10) for i in range(0,1000)] bl = Analysis(random_data) bl.plot_first_digit('Random stuff') ``` ![Test Image 1](test/test.png) Note that we use the [Euclidean distance] between the digit frequency from Benford's law and your own data as a measure and that we use Poisson error bars (based on the number of data points). #### Euclidean distance The normalized Euclidean distance is a nice way to test how Benford your data is. This value is situated between 0 and 1, the closer to 0 the better. However, it is not a formal statistic because it is sample size independent. In the literature there are several other measures (Chi-square, Kolmogorov-Smirnov, ..) that are used but I noticed in my own research that size dependency is a limitation in bigger datasets and classifies all bigger datasets as non-Benford, even though they are Benford by eye. More about the justification of using the Euclidean distance is explained in [my own paper] in Appendix D. #### Citing If you find ```benfordslaw_analysis``` a useful tool for your own research, please cite in the following way: ``` @misc{benford_py, author = {Jurjen, de Jong}, title = {{benfordslaw_analysis: a Python Implementation of Benford's Law analysis}}, year = {2021}, howpublished = {\url{https://github.com/jurjen93/Benfords_law}}, } ``` [wikipedia]: https://en.wikipedia.org/wiki/Benford%27s_law [fraud]: https://www.journalofaccountancy.com/issues/2017/apr/excel-and-benfords-law-to-detect-fraud.html [science]: https://towardsdatascience.com/benfords-law-in-the-gaia-universe-b5727db7a936 [quality of data]: https://www.idfcinstitute.org/blog/2020/november/using-benfords-law-to-understand-covid-19-data-quality/ [Euclidean distance]: https://en.wikipedia.org/wiki/Euclidean_distance [my own paper]: https://www.aanda.org/articles/aa/pdf/2020/10/aa37256-19.pdf


نیازمندی

مقدار نام
- matplotlib
- scipy
- pandas


نحوه نصب


نصب پکیج whl benfordslaw-analysis-1.0.3:

    pip install benfordslaw-analysis-1.0.3.whl


نصب پکیج tar.gz benfordslaw-analysis-1.0.3:

    pip install benfordslaw-analysis-1.0.3.tar.gz