معرفی شرکت ها


benfordslaw-1.2.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

benfordslaw is a python library to test the frequency distribution of leading digits.
ویژگی مقدار
سیستم عامل -
نام فایل benfordslaw-1.2.2
نام benfordslaw
نسخه کتابخانه 1.2.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Erdogan Taskesen
ایمیل نویسنده erdogant@gmail.com
آدرس صفحه اصلی https://erdogant.github.io/benfordslaw
آدرس اینترنتی https://pypi.org/project/benfordslaw/
مجوز -
# benfordslaw [![Python](https://img.shields.io/pypi/pyversions/benfordslaw)](https://img.shields.io/pypi/pyversions/benfordslaw) [![PyPI Version](https://img.shields.io/pypi/v/benfordslaw)](https://pypi.org/project/benfordslaw/) [![License](https://img.shields.io/badge/license-MIT-green.svg)](https://github.com/erdogant/benfordslaw/blob/master/LICENSE) [![BuyMeCoffee](https://img.shields.io/badge/buymeacoffee-grey.svg)](https://www.buymeacoffee.com/erdogant) [![Github Forks](https://img.shields.io/github/forks/erdogant/benfordslaw.svg)](https://github.com/erdogant/benfordslaw/network) [![GitHub Open Issues](https://img.shields.io/github/issues/erdogant/benfordslaw.svg)](https://github.com/erdogant/benfordslaw/issues) [![Project Status](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![Downloads](https://pepy.tech/badge/benfordslaw/month)](https://pepy.tech/project/benfordslaw/month) [![Downloads](https://pepy.tech/badge/benfordslaw)](https://pepy.tech/project/benfordslaw) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://erdogant.github.io/benfordslaw/pages/html/Documentation.html#colab-notebook) [![Sphinx](https://img.shields.io/badge/Sphinx-Docs-Green)](https://erdogant.github.io/benfordslaw/) [![DOI](https://zenodo.org/badge/239205250.svg)](https://zenodo.org/badge/latestdoi/239205250) <!---[![Coffee](https://img.shields.io/badge/coffee-black-grey.svg)](https://erdogant.github.io/donate/?currency=USD&amount=5)--> * ``benfordslaw`` is Python package to test if an empirical (observed) distribution differs significantly from a theoretical (expected, Benfords) distribution. The law states that in many naturally occurring collections of numbers, the leading significant digit is likely to be small. This method can be used if you want to test whether your set of numbers may be artificial (or manipulated). If a certain set of values follows Benford's Law then model's for the corresponding predicted values should also follow Benford's Law. Normal data (Unmanipulated) does trend with Benford's Law, whereas Manipulated or fraudulent data does not. * Assumptions of the data: 1. The numbers need to be random and not assigned, with no imposed minimums or maximums. 2. The numbers should cover several orders of magnitude 3. Dataset should preferably cover at least 1000 samples. Though Benford's law has been shown to hold true for datasets containing as few as 50 numbers. # **⭐️ Star this repo if you like it ⭐️** # #### Install benfordslaw from PyPI ```bash pip install benfordslaw ``` #### Import benfordslaw package ```python from benfordslaw import benfordslaw ``` # ### [Documentation pages](https://erdogant.github.io/benfordslaw/) On the [documentation pages](https://erdogant.github.io/benfordslaw/) you can find detailed information about the working of the ``benfordslaw`` with many examples. <hr> ### Examples # * [Example: Analyze first digit-distribution](https://erdogant.github.io/benfordslaw/pages/html/Examples.html#second-digit-test) <p align="left"> <a href="https://erdogant.github.io/benfordslaw/pages/html/Examples.html#second-digit-test"> <img src="https://github.com/erdogant/benfordslaw/blob/master/docs/figs/fig1.png" width="600" /> </a> </p> # * [Example: Analyze second digit-distribution](https://erdogant.github.io/benfordslaw/pages/html/Examples.html) <p align="left"> <a href="https://erdogant.github.io/benfordslaw/pages/html/Examples.html"> <img src="https://github.com/erdogant/benfordslaw/blob/master/docs/figs/fig2nd_digit_votes.png" width="600" /> </a> </p> # * [Example: Analyze last digit-distribution](https://erdogant.github.io/benfordslaw/pages/html/Examples.html#last-digit-test) <p align="left"> <a href="https://erdogant.github.io/benfordslaw/pages/html/Examples.html#last-digit-test"> <img src="https://github.com/erdogant/benfordslaw/blob/master/docs/figs/fig_last_digit_votes.png" width="600" /> </a> </p> # * [Example: Analyze second last digit-distribution](https://erdogant.github.io/benfordslaw/pages/html/Examples.html#second-last-digit-test) <p align="left"> <a href="https://erdogant.github.io/benfordslaw/pages/html/Examples.html#second-last-digit-test"> <img src="https://github.com/erdogant/benfordslaw/blob/master/docs/figs/fig_2nd_last_digit_votes.png" width="600" /> </a> </p> #### References * https://en.wikipedia.org/wiki/Benford%27s_law * https://towardsdatascience.com/frawd-detection-using-benfords-law-python-code-9db8db474cf8 #### Citation Please cite in your publications if this is useful for your research (see citation). ### Maintainers * Erdogan Taskesen, github: [erdogant](https://github.com/erdogant) ### Contribute * All kinds of contributions are welcome! * If you wish to buy me a <a href="https://www.buymeacoffee.com/erdogant">Coffee</a> for this work, it is very appreciated :) ### Licence See [LICENSE](LICENSE) for details.


نیازمندی

مقدار نام
- matplotlib
- numpy
- scipy
- pandas
- wget


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl benfordslaw-1.2.2:

    pip install benfordslaw-1.2.2.whl


نصب پکیج tar.gz benfordslaw-1.2.2:

    pip install benfordslaw-1.2.2.tar.gz