معرفی شرکت ها


benchlog-0.3.dev4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Log CPU, GPU and Memory usage for a project overtime and send to server
ویژگی مقدار
سیستم عامل -
نام فایل benchlog-0.3.dev4
نام benchlog
نسخه کتابخانه 0.3.dev4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Anthony Pham
ایمیل نویسنده benchlogpy@gmail.com
آدرس صفحه اصلی https://github.com/Keydex/BenchLog
آدرس اینترنتی https://pypi.org/project/benchlog/
مجوز MIT
# Benchlog Package Benchlog allows a user to record the runtime and resource allocation of their program overtime. # Changelog ## Version 0.3 ### Features - Added logging of accuracy - Added unique filename generation (using date and time) - [Documentation] Added a changelog - Allow local saving and sending to server with `setHost(HOST, local)` - Added GPU logging of usage, memory, memory utilization, gpu UUID and name with `enableGPU()` - Prevent users that do not have 'nvidia-smi' installed from enabling GPU ### Bug Fixes - Fixed bug where sendData would only save to telemetry.json on error instead of calling `saveData` - Prevented user from calling `end()` without calling `start()` - Prevented user from calling `end()` twice - Call for variable `deviceID` did not exist in `enableGPU()`, use `self.gpuObj` instead - Fixed bug where we called `saveData()` instead of `self.saveData()` ## Installation `pip install benchlog` ## Use ### Benchlog Arguments | Argument | Type | Description | |---|---|---| | projectname | string | The name of your project | | iterationNum | integer | Number of iteration your code uses (Used to record progress)| | Opt: featureList | [string] | Record list of features used for project | | Opt: quiet | integer | Set to 1 to disable logging, default: 0 | ### Setup 1. Import BenchLog `from benchlog import BenchLog` 2. Declare new instance of BenchLog E.g. `logging = BenchLog('Test Project', 1024, ['tensorflow', 'featureB'], quiet1]` 3. **Optional:** Declare a host to send the telemetry data to. If no host is stored or data fails to send we will store the data in a file called `telemetry.json` in the directory of the project. If you would like to enable local and external logging, set the second argument to 1. setHost(ipaddress, [OPTIONAL:1 to enable local logging, 0 default]) E.g `logging.setHost('http://localhost:3000',1)` 4. **Optional:** GPU Logging - Enable GPU Logging by calling `logging.enableGPU()` If you have more than one GPU refer to the enableGPU section 4. Start logging by calling `logging.start()` 5. Call `logging.log(iterationNum)` every once in awhile to log progress. 6. End logging by calling `logging.end()` ### Example Code ``` from benchlog import BenchLog logging = BenchLog('My Project', 10000, ['FeatureA','FeatureB']) logging.setHost('http://localhost:3000') array = logging.enableGPU(0) logging.start() for i in range(1,10000): if(i % 1000 == 0): #Do Something here logging.log(i) logging.end() ``` ### enableGPU() `logging.enableGPU()` uses `GPUtil` in order to gather gpu information. This will only work with Nvidia GPUs. If you have **multiple GPUs** you can pass in the index of the GPU you want to use. You can find which GPU you want to log by calling nvidia-smi and returning the GPU you want to use. E.g `logging.enableGPU(1)` GPU logging records three things. `GpuMemUsage` - This is the amount of memory being used by the GPU `GpuMemUtil` - This is the memory activity (i/o) within GPU memory `GpuUsage` - This is the standard gpu load ### Example telemetry output ``` {"cores":"4","runTime":"1.506113","size":"10000","features":["testa","testb"],"projectName":"test","infoRunTime":["0.177929","0.345282","0.511437","0.685919","0.850231","1.011178","1.182584","1.345929","1.505748","1.506086"],"infoCpuUsage":["13.2","32.4","30.3","35.7","30.8","28.1","36.2","26.2","28.1","0.0"],"infoMemoryUsage":["452567040","852570112","1252573184","1652576256","2052579328","2452582400","2852585472","3252588544","3652591616","3652591616"],"infoProgress":["0.1","0.2","0.3","0.4","0.5","0.6","0.7","0.8","0.9","1.0"]} ``` ## Future To Do - [X] Do not overwrite old telemetry data - [X] GPU Utilization - [ ] Local Visualization - [ ] Web UI to view results - [ ] Server - [X] Change progress to 0-100


نحوه نصب


نصب پکیج whl benchlog-0.3.dev4:

    pip install benchlog-0.3.dev4.whl


نصب پکیج tar.gz benchlog-0.3.dev4:

    pip install benchlog-0.3.dev4.tar.gz