معرفی شرکت ها


benchadapt-2023.2.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Adapters for Running and Tracking Benchmarks
ویژگی مقدار
سیستم عامل -
نام فایل benchadapt-2023.2.8
نام benchadapt
نسخه کتابخانه 2023.2.8
نگهدارنده ['Voltron Data']
ایمیل نگهدارنده ['conbench@voltrondata.com']
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/conbench/conbench/tree/main/benchadapt
آدرس اینترنتی https://pypi.org/project/benchadapt/
مجوز -
# Python {benchadapt} A small python package with utilities for getting benchmark results into a Conbench server. ## Useful components in this package ### `BenchmarkResult` and `BenchmarkRun` dataclasses The `BenchmarkResult` and `BenchmarkRun` dataclasses are designed to make it easy to populate JSON payloads to post to a Conbench server. Their structure corresponds to the corresponding POST endpoint; they each have a `.to_publishable_dict()` method that produces a dict to post. Regardless of how you are using them, the docstrings of these two objects will be useful as you try to assemble your results to get them in Conbench. All fields are documented, as are interactions between them and what you likely need to specify. The objects try to help you fill in your payloads correctly, including some defaults, like populating `machine_info` with metadata on the current machine. If you are running on a cluster instead, you will need to populate `cluster_info` yourself, and `machine_info` will remain empty. There is light validation, but [for now] the API is the ultimate validator; it is possible to make payloads that will be rejected. If you need to interact directly with a Conbench webapp's API instead of letting adapters (see below) or another tool manage sending results for you, you can use [benchclients.ConbenchClient](https://github.com/conbench/conbench/blob/main/benchclients/python/benchclients/conbench.py) to make requests. As benchclients is a dependency of benchadapt, you should not need to install anything new, and it is nicely set up to handle auth and such for you. ### Adapters The concept of Conbench adapters is for when you already have a benchmarking method that produces a pile of results (say in JSON files, though anything works), and you need to transform them into an appropriate form that can be posted to a Conbench API. The `benchadapt.adapters.BenchmarkAdapter` abstract class defines a basic workflow: 1. Call an arbitrary `command` shell command, presumably to run benchmarks. If results are already guaranteed to exist, this can be set to do nothing. 2. Transform results produced by the benchmarks into a list of `BenchmarkResult` instances. 3. Postprocess results to ensure a consistent `run_id` and override any metadata fields not already set correctly. 4. Post each result to a Conbench API. Classes that inherit from the abstract class need to define 1. How to get results, including what `command` should be (though it can be defined later by the user, if desired) and how to get the raw results (e.g. if they are in a file or directory of files, where they are and how to read them in). 2. How to transform the results into a list of `BenchmarkResult` instances ((2) above) in the `._transform_results()` method. (3) and (4) are handled by the abstract class. Various adapters are alrady defined in the `adapters` submodule, including ones for Google Benchmark and Folly, as well as a generic `CallableAdapter`, which takes a Python `Callable` instance (a function or class with a `__call__()` method) that returns a list of `BenchmarkResult` instances directly instead of a shell command. Many more adapters are possible; if you create one corresponding to a benchmarking tool, please make a PR! #### Running an adapter Adapters have separate `.run()` and `.publish_results()` methods; the former runs the benchmarks, transforms the results, and stores them in a `.results` attribute of the instance. It does not post them, so is useful for looking at results interactively before sending them. `.publish_results()` takes the results from the `.results` attribute and posts them to a Conbench API. The whole instance also has a `__call__()` method defined so it can be called like a function that both runs and publishes, so a somewhat minimal script for running benchmarks in CI might look like ``` python import os from benchadapt.adapters import GoogleBenchmarkAdapter adapter = GoogleBenchmarkAdapter( command=["bash", "./run-benchmarks.sh"], result_file="benchmarks.json", result_fields_override={ "run_reason": os.getenv("CONBENCH_RUN_REASON") }, result_fields_append={ "info": {"build_version": os.getenv("MY_BUILD_VERSION")}, "context": {"compiler_flags": os.getenv("MY_COMPILER_FLAGS")} } ) adapter() ``` Of note: - `result_fields_override` will replace the whole attribute with a new value. This works with all types (strings, dicts, etc.), so here `run_reason` will be set for all results. - `result_fields_append` will append the new values to dicts which may already have data. Here, `build_version` will be appended to the `info` dict. In this case it is an empty dict anyway, so this is equivalent to `result_fields_override={"info": {"build_version": os.getenv("MY_BUILD_VERSION")}})`. But the `context` dict will already contain a `"benchmark_language"` key; this will be retained, and `compiler_flags` will be appended. - For this to work, a lot of environment variables have to be set! This includes ones with information about the Conbench server and the current git metadata. See the "Environment Variables" section below for a full list. ## Environment variables Some operations of benchadapt rely on a number of environment variables. The Conbench API ones (`CONBENCH_*`) are used by `benchclients.ConbenchClient`; the git ones (`CONBENCH_PROJECT_*`) are used to populate run and result metadata if not specified directly; and `CONBENCH_MACHINE_INFO_NAME` is for overriding the machine name in automatically gathered machine info when necessary: - `CONBENCH_URL`: Required. The URL of the Conbench API without a trailing slash, e.g. `https://conbench.example.com` - `CONBENCH_EMAIL`: The email to use for Conbench login - `CONBENCH_PASSWORD`: The password to use for Conbench login - `CONBENCH_PROJECT_REPOSITORY`: The repository name (in the format `org/repo`) or the URL (in the format `https://github.com/org/repo`) - `CONBENCH_PROJECT_PR_NUMBER`: [recommended] The number of the GitHub pull request that is running this benchmark. Do not supply this for a runs on the default branch. - `CONBENCH_PROJECT_COMMIT`: The 40-character commit SHA of the repo being benchmarked - `CONBENCH_MACHINE_INFO_NAME`: By default, the running machine host name (sent in `machine_info.name` when posting runs and benchmarks) will be obtained with `platform.node()`, but in circumstances where consistency is needed (e.g. running in CI or on cloud runners), a value for host name can be specified via this environment variable instead.


نیازمندی

مقدار نام
- benchclients


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl benchadapt-2023.2.8:

    pip install benchadapt-2023.2.8.whl


نصب پکیج tar.gz benchadapt-2023.2.8:

    pip install benchadapt-2023.2.8.tar.gz