معرفی شرکت ها


benchENAS-1.2.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A benchmark platform for Evolutionary Neural Architecture Search
ویژگی مقدار
سیستم عامل -
نام فایل benchENAS-1.2.0
نام benchENAS
نسخه کتابخانه 1.2.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده benchenas
ایمیل نویسنده benchenas99@gmail.com
آدرس صفحه اصلی https://github.com/benchenas/BenchENA
آدرس اینترنتی https://pypi.org/project/benchENAS/
مجوز -
The codes have been tested on Python 3.6 + pytorch 1.1 + torchvision 0.3.0 (pytorch 1.3 seems also ok, but not test thoroughly) BenchENAS is a platform to help researchers conduct fair comparisons upon Evolutionary algorithm based Neural Architecture Search (ENAS) algorithms. BenchENAS currently has the following features (more are still in process, and welcome join us to contribute BenchENAS): - Nine representative state-of-the-art ENAS algorithms have been implemented into BenchENAS. They can be easily performed with customized benchmark datasets (including popular preprocessing techniques) and training algorithms (such as learning rate, optimizers, etc). - A GPU distributed training component is designed in BenchENAS to accelerate fitness evaluation. This component is specifically developed for common research environments where not many GPUs are specifically prepared. - BenchENAS is implemented by native Python with very few third-party libraries for easy installation. All components in BenchENAS can be easily configured with different data settings and different trainer settings. - BenchENAS is modular designed for easy extensibility. Researchers can easily implement their ENAS algorithms into BenchENAS, while directly using the implemented datasets, training algorithms (can also add their own datasets and training algorithms into BenchENAS), and distributed training components. A research paper comprehensively introducing BenchENAS is available at: https://ieeexplore.ieee.org/document/9697075. ## Requirements: ### Center Computer: - redis (ubuntu software, start using the command redis-server --protected-mode on) - sshpass (python lib) - paramiko (python lib) ### Conter Computer & workers: - multiprocess (python lib) - redis (python lib) ## Running Here's a quick run down of the main steps of running BenchENAS. For more details see our [Documentation](https://benchenas.com/api/modules.html/) and [Example](https://benchenas.com/). 1. Start the redis-server on the center computer ``` $ ./redis-server redis.conf ``` 2. Initialize configuration of the algorithm and training parameters ```python alg_list = {'algorithm': 'aecnn', 'max_gen': 20, 'pop_size': 20, 'log_server': 'xx.xx.xx.xx', 'log_server_port': 6379, 'exe_path': '/home/xxx/anaconda3/bin/python3'} # dataset_list = ['MNIST', 'CIFAR10', 'CIFAR100'] # if dataset not in dataset_list, load customized dataset(data_dir) train_list = {'dataset': 'CIFAR10', 'data_dir': '/home/xiaoyang/eye_dataset', 'img_input_size': [244, 244, 3],'optimizer': 'SGD', 'lr': 0.025, 'batch_size': 64, 'total_epoch': 50, 'lr_strategy': 'ExponentialLR'} gpu_info_list = {} content = {'worker_ip': 'xx.xx.xx.xx', 'worker_name': 'cuda0', 'ssh_name': 'xxx', 'ssh_password': '.123456', 'gpu': [1, 2]} gpu_info_list['xx.xx.xx.xx'] = content ``` 3. Start the init_compute.py script to start the compute platform and detect free GPU devices ```python from benchenas import init_compute init_compute.run(alg_list, train_list, gpu_info_list) ``` 4. Start the algorithm you would like to perform ```python from benchenas import main main.run(alg_list, train_list, gpu_info_list) ``` ## How to use - Start the redis-server on the center computer (redis-server --protected-mode no) - Start the init_compute.py script to start the compute platform with parameter[run(alg_list, train_list, gpu_info_list)] - Start the algorithm you would like to perform with parameter[run(alg_list, train_list, gpu_info_list, search_space)] search_space default 'micro'


نیازمندی

مقدار نام
- paramiko
- numpy
- multiprocess
==1.6.0 torch
==0.7.0 torchvision
- redis
- scipy


نحوه نصب


نصب پکیج whl benchENAS-1.2.0:

    pip install benchENAS-1.2.0.whl


نصب پکیج tar.gz benchENAS-1.2.0:

    pip install benchENAS-1.2.0.tar.gz