معرفی شرکت ها


beluga-ml-1.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Python library to help make your Machine Learning easier
ویژگی مقدار
سیستم عامل -
نام فایل beluga-ml-1.1.0
نام beluga-ml
نسخه کتابخانه 1.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Data Science with Daniel
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/datasciencewithdaniel/beluga
آدرس اینترنتی https://pypi.org/project/beluga-ml/
مجوز GPL-3.0
# Beluga - make predictions, get metrics [![License](https://img.shields.io/github/license/datasciencewithdaniel/beluga?style=plastic)](https://github.com/datasciencewithdaniel/beluga/blob/main/LICENSE) [![Code Style](https://img.shields.io/badge/code%20style-black-000000.svg?style=plastic)](https://github.com/psf/black) [![Last Commit](https://img.shields.io/github/last-commit/datasciencewithdaniel/beluga?style=plastic)](https://github.com/datasciencewithdaniel/beluga/commits/main) [![Contributors](https://img.shields.io/github/contributors/datasciencewithdaniel/beluga?style=plastic)](https://github.com/datasciencewithdaniel/beluga/graphs/contributors) [![Size](https://img.shields.io/github/repo-size/datasciencewithdaniel/beluga?style=plastic)]() [![Issues](https://img.shields.io/github/issues/datasciencewithdaniel/beluga?style=plastic)](https://github.com/datasciencewithdaniel/beluga/issues) [![Discord](https://img.shields.io/discord/851059417562742854?style=plastic)](https://discord.gg/D3KfXbdZgk) Beluga is a Python library that provides easy access to all of the metrics you need in your multiclass classification tasks. We were inspired by [this](https://www.youtube.com/watch?v=0qRgWubbPxQ) friendly Beluga whale to help others in their Machine Learning projects. Check out the [Issues](https://github.com/datasciencewithdaniel/beluga/issues) for future functionality and progress such as support for regression tasks and metric visualisations. The official PyPi release can be found [here](https://pypi.org/project/beluga-ml/#description). ## Overview - Get various metrics on your Machine Learning predictions - Print your metrics or incorporate them into downstream analysis - Visualise your metrics (Coming Soon) ## Installation To install this library you can use Pypi via pip ``` pip install beluga_ml ``` ## Usage Import beluga into your project ```py import beluga ``` ## Documentation Methods in metrics have following parameters: * **predictions** - (Iterable) predictions output from your model * **ground_truth** - (Iterable) ground truth values to compare against * **raw** - (bool). *Optional*. Use to get metrics in a dictionary instead of printing. Default: *False*. ### Methods list: **true_positive**: Number of correctly classified labels of the positive class **true_negative**: Number of correctly classified labels of the negative class **false_positive**: Number of incorrectly classified labels of the postive class **false_negative**: Number of incorrectly classified labels of the negative class **precision**: Percentage of positive class predictions that are correct **recall**: Percentage of correctly classified labels from the positive class **sensitivity**: (see recall) **specificity**: Percentage of correctly classified labels from the negative class **f1**: The harmomic mean of precision and recall **accuracy**: Percentage of correctly classified labels ### Examples ``` beluga.metrics.true_positive([1, 1, 1, 0, 0], [1, 0, 1, 0, 0]) >>> True Positive ============== 0 2.0000 1 2.0000 ============== beluga.metrics.recall(['cat', 'dog', 'dog'], ['cat', 'dog', 'dog']) >>> Recall ============== cat 1.0000 dog 1.0000 ============== beluga.metrics.f1(['Elon Musk', 'Tim Cook', 'robot'], ['Elon Musk', 'Tim Cook', 'Mark Zuckerberg']) >>> F1 score ======================== Elon Musk 1.0000 Mark Zuckerberg 0.0000 Tim Cook 1.0000 ======================== ``` ## Running Code Run the code from the home direcotry for any development as follows: ``` python -m beluga.metrics ``` This should return nothing as all development tests have been removed. ## Tests Run the tests from the library home directory with the following: ``` python -m setup pytest ``` Check the coverage of these tests using: ``` pytest --cov=beluga tests/ --cov-report term-missing ``` ## License GPL-3.0 License # Beluga uses open source packages to work properly: * [numpy](https://github.com/numpy/numpy) - The fundamental package for scientific computing with Python. And of course **beluga** itself is open source with a [public repository](https://github.com/datasciencewithdaniel/beluga) on GitHub.


نیازمندی

مقدار نام
- numpy


نحوه نصب


نصب پکیج whl beluga-ml-1.1.0:

    pip install beluga-ml-1.1.0.whl


نصب پکیج tar.gz beluga-ml-1.1.0:

    pip install beluga-ml-1.1.0.tar.gz