معرفی شرکت ها


beir-1.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Heterogeneous Benchmark for Information Retrieval
ویژگی مقدار
سیستم عامل -
نام فایل beir-1.0.1
نام beir
نسخه کتابخانه 1.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Nandan Thakur
ایمیل نویسنده nandant@gmail.com
آدرس صفحه اصلی https://github.com/beir-cellar/beir
آدرس اینترنتی https://pypi.org/project/beir/
مجوز Apache License 2.0
<h1 align="center"> <img style="vertical-align:middle" width="450" height="180" src="https://raw.githubusercontent.com/benchmarkir/beir/main/images/color_logo_transparent_cropped.png" /> </h1> <p align="center"> <a href="https://github.com/beir-cellar/beir/releases"> <img alt="GitHub release" src="https://img.shields.io/github/release/beir-cellar/beir.svg"> </a> <a href="https://www.python.org/"> <img alt="Build" src="https://img.shields.io/badge/Made%20with-Python-1f425f.svg?color=purple"> </a> <a href="https://github.com/beir-cellar/beir/blob/master/LICENSE"> <img alt="License" src="https://img.shields.io/github/license/beir-cellar/beir.svg?color=green"> </a> <a href="https://colab.research.google.com/drive/1HfutiEhHMJLXiWGT8pcipxT5L2TpYEdt?usp=sharing"> <img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"> </a> <a href="https://pepy.tech/project/beir"> <img alt="Downloads" src="https://static.pepy.tech/personalized-badge/beir?period=total&units=international_system&left_color=grey&right_color=orange&left_text=Downloads"> </a> <a href="https://github.com/beir-cellar/beir/"> <img alt="Downloads" src="https://badges.frapsoft.com/os/v1/open-source.svg?v=103"> </a> </p> <h4 align="center"> <p> <a href="https://openreview.net/forum?id=wCu6T5xFjeJ">Paper</a> | <a href="#beers-installation">Installation</a> | <a href="#beers-quick-example">Quick Example</a> | <a href="#beers-available-datasets">Datasets</a> | <a href="https://github.com/beir-cellar/beir/wiki">Wiki</a> | <a href="https://huggingface.co/BeIR">Hugging Face</a> <p> </h4> <!-- > The development of BEIR benchmark is supported by: --> <h3 align="center"> <a href="http://www.ukp.tu-darmstadt.de"><img style="float: left; padding: 2px 7px 2px 7px;" width="220" height="100" src="./images/ukp.png" /></a> <a href="https://www.tu-darmstadt.de/"><img style="float: middle; padding: 2px 7px 2px 7px;" width="250" height="90" src="./images/tu-darmstadt.png" /></a> <a href="https://uwaterloo.ca"><img style="float: right; padding: 2px 7px 2px 7px;" width="320" height="100" src="./images/uwaterloo.png" /></a> </h3> <h3 align="center"> <a href="https://huggingface.co/"><img style="float: middle; padding: 2px 7px 2px 7px;" width="400" height="80" src="./images/HF.png" /></a> </h3> ## :beers: What is it? **BEIR** is a **heterogeneous benchmark** containing diverse IR tasks. It also provides a **common and easy framework** for evaluation of your NLP-based retrieval models within the benchmark. For **an overview**, checkout our **new wiki** page: [https://github.com/beir-cellar/beir/wiki](https://github.com/beir-cellar/beir/wiki). For **models and datasets**, checkout out **HuggingFace (HF)** page: [https://huggingface.co/BeIR](https://huggingface.co/BeIR). For more information, checkout out our publications: - [BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models](https://openreview.net/forum?id=wCu6T5xFjeJ) (NeurIPS 2021, Datasets and Benchmarks Track) ## :beers: Installation Install via pip: ```python pip install beir ``` If you want to build from source, use: ```python $ git clone https://github.com/beir-cellar/beir.git $ cd beir $ pip install -e . ``` Tested with python versions 3.6 and 3.7 ## :beers: Features - Preprocess your own IR dataset or use one of the already-preprocessed 17 benchmark datasets - Wide settings included, covers diverse benchmarks useful for both academia and industry - Includes well-known retrieval architectures (lexical, dense, sparse and reranking-based) - Add and evaluate your own model in a easy framework using different state-of-the-art evaluation metrics ## :beers: Quick Example For other example codes, please refer to our **[Examples and Tutorials](https://github.com/beir-cellar/beir/wiki/Examples-and-tutorials)** Wiki page. ```python from beir import util, LoggingHandler from beir.retrieval import models from beir.datasets.data_loader import GenericDataLoader from beir.retrieval.evaluation import EvaluateRetrieval from beir.retrieval.search.dense import DenseRetrievalExactSearch as DRES import logging import pathlib, os #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout #### Download scifact.zip dataset and unzip the dataset dataset = "scifact" url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/{}.zip".format(dataset) out_dir = os.path.join(pathlib.Path(__file__).parent.absolute(), "datasets") data_path = util.download_and_unzip(url, out_dir) #### Provide the data_path where scifact has been downloaded and unzipped corpus, queries, qrels = GenericDataLoader(data_folder=data_path).load(split="test") #### Load the SBERT model and retrieve using cosine-similarity model = DRES(models.SentenceBERT("msmarco-distilbert-base-tas-b"), batch_size=16) retriever = EvaluateRetrieval(model, score_function="dot") # or "cos_sim" for cosine similarity results = retriever.retrieve(corpus, queries) #### Evaluate your model with NDCG@k, MAP@K, Recall@K and Precision@K where k = [1,3,5,10,100,1000] ndcg, _map, recall, precision = retriever.evaluate(qrels, results, retriever.k_values) ``` ## :beers: Available Datasets Command to generate md5hash using Terminal: ``md5sum filename.zip``. You can view all datasets available **[here](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/)** or on **[HuggingFace](https://huggingface.co/BeIR)**. | Dataset | Website| BEIR-Name | Public? | Type | Queries | Corpus | Rel D/Q | Down-load | md5 | | -------- | -----| ---------| ------- | --------- | ----------- | ---------| ---------| :----------: | :------:| | MSMARCO | [Homepage](https://microsoft.github.io/msmarco/)| ``msmarco`` | ✅ | ``train``<br>``dev``<br>``test``| 6,980 | 8.84M | 1.1 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/msmarco.zip) | ``444067daf65d982533ea17ebd59501e4`` | | TREC-COVID | [Homepage](https://ir.nist.gov/covidSubmit/index.html)| ``trec-covid``| ✅ | ``test``| 50| 171K| 493.5 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/trec-covid.zip) | ``ce62140cb23feb9becf6270d0d1fe6d1`` | | NFCorpus | [Homepage](https://www.cl.uni-heidelberg.de/statnlpgroup/nfcorpus/) | ``nfcorpus`` | ✅ |``train``<br>``dev``<br>``test``| 323 | 3.6K | 38.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/nfcorpus.zip) | ``a89dba18a62ef92f7d323ec890a0d38d`` | | BioASQ | [Homepage](http://bioasq.org) | ``bioasq``| ❌ | ``train``<br>``test`` | 500 | 14.91M | 8.05 | No | [How to Reproduce?](https://github.com/beir-cellar/beir/blob/main/examples/dataset#2-bioasq) | | NQ | [Homepage](https://ai.google.com/research/NaturalQuestions) | ``nq``| ✅ | ``train``<br>``test``| 3,452 | 2.68M | 1.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/nq.zip) | ``d4d3d2e48787a744b6f6e691ff534307`` | | HotpotQA | [Homepage](https://hotpotqa.github.io) | ``hotpotqa``| ✅ |``train``<br>``dev``<br>``test``| 7,405 | 5.23M | 2.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/hotpotqa.zip) | ``f412724f78b0d91183a0e86805e16114`` | | FiQA-2018 | [Homepage](https://sites.google.com/view/fiqa/) | ``fiqa`` | ✅ | ``train``<br>``dev``<br>``test``| 648 | 57K | 2.6 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/fiqa.zip) | ``17918ed23cd04fb15047f73e6c3bd9d9`` | | Signal-1M(RT) | [Homepage](https://research.signal-ai.com/datasets/signal1m-tweetir.html)| ``signal1m`` | ❌ | ``test``| 97 | 2.86M | 19.6 | No | [How to Reproduce?](https://github.com/beir-cellar/beir/blob/main/examples/dataset#4-signal-1m) | | TREC-NEWS | [Homepage](https://trec.nist.gov/data/news2019.html) | ``trec-news`` | ❌ | ``test``| 57 | 595K | 19.6 | No | [How to Reproduce?](https://github.com/beir-cellar/beir/blob/main/examples/dataset#1-trec-news) | | Robust04 | [Homepage](https://trec.nist.gov/data/robust/04.guidelines.html) | ``robust04``| ❌ | ``test``| 249 | 528K | 69.9 | No | [How to Reproduce?](https://github.com/beir-cellar/beir/blob/main/examples/dataset#3-robust04) | | ArguAna | [Homepage](http://argumentation.bplaced.net/arguana/data) | ``arguana``| ✅ |``test`` | 1,406 | 8.67K | 1.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/arguana.zip) | ``8ad3e3c2a5867cdced806d6503f29b99`` | | Touche-2020| [Homepage](https://webis.de/events/touche-20/shared-task-1.html) | ``webis-touche2020``| ✅ | ``test``| 49 | 382K | 19.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/webis-touche2020.zip) | ``46f650ba5a527fc69e0a6521c5a23563`` | | CQADupstack| [Homepage](http://nlp.cis.unimelb.edu.au/resources/cqadupstack/) | ``cqadupstack``| ✅ | ``test``| 13,145 | 457K | 1.4 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/cqadupstack.zip) | ``4e41456d7df8ee7760a7f866133bda78`` | | Quora| [Homepage](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) | ``quora``| ✅ | ``dev``<br>``test``| 10,000 | 523K | 1.6 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/quora.zip) | ``18fb154900ba42a600f84b839c173167`` | | DBPedia | [Homepage](https://github.com/iai-group/DBpedia-Entity/) | ``dbpedia-entity``| ✅ | ``dev``<br>``test``| 400 | 4.63M | 38.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/dbpedia-entity.zip) | ``c2a39eb420a3164af735795df012ac2c`` | | SCIDOCS| [Homepage](https://allenai.org/data/scidocs) | ``scidocs``| ✅ | ``test``| 1,000 | 25K | 4.9 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/scidocs.zip) | ``38121350fc3a4d2f48850f6aff52e4a9`` | | FEVER | [Homepage](http://fever.ai) | ``fever``| ✅ | ``train``<br>``dev``<br>``test``| 6,666 | 5.42M | 1.2| [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/fever.zip) | ``5a818580227bfb4b35bb6fa46d9b6c03`` | | Climate-FEVER| [Homepage](http://climatefever.ai) | ``climate-fever``| ✅ |``test``| 1,535 | 5.42M | 3.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/climate-fever.zip) | ``8b66f0a9126c521bae2bde127b4dc99d`` | | SciFact| [Homepage](https://github.com/allenai/scifact) | ``scifact``| ✅ | ``train``<br>``test``| 300 | 5K | 1.1 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/scifact.zip) | ``5f7d1de60b170fc8027bb7898e2efca1`` | ## :beers: Additional Information We also provide a variety of additional information in our **[Wiki](https://github.com/beir-cellar/beir/wiki)** page. Please refer to these pages for the following: ### Quick Start - [Installing BEIR](https://github.com/beir-cellar/beir/wiki/Installing-beir) - [Examples and Tutorials](https://github.com/beir-cellar/beir/wiki/Examples-and-tutorials) ### Datasets - [Datasets Available](https://github.com/beir-cellar/beir/wiki/Datasets-available) - [Multilingual Datasets](https://github.com/beir-cellar/beir/wiki/Multilingual-datasets) - [Load your Custom Dataset](https://github.com/beir-cellar/beir/wiki/Load-your-custom-dataset) ### Models - [Models Available](https://github.com/beir-cellar/beir/wiki/Models-available) - [Evaluate your Custom Model](https://github.com/beir-cellar/beir/wiki/Evaluate-your-custom-model) ### Metrics - [Metrics Available](https://github.com/beir-cellar/beir/wiki/Metrics-available) ### Miscellaneous - [BEIR Leaderboard](https://github.com/beir-cellar/beir/wiki/Leaderboard) - [Couse Material on IR](https://github.com/beir-cellar/beir/wiki/Course-material-on-ir) ## :beers: Disclaimer Similar to Tensorflow [datasets](https://github.com/tensorflow/datasets) or HuggingFace's [datasets](https://github.com/huggingface/datasets) library, we just downloaded and prepared public datasets. We only distribute these datasets in a specific format, but we do not vouch for their quality or fairness, or claim that you have license to use the dataset. It remains the user's responsibility to determine whether you as a user have permission to use the dataset under the dataset's license and to cite the right owner of the dataset. If you're a dataset owner and wish to update any part of it, or do not want your dataset to be included in this library, feel free to post an issue here or make a pull request! If you're a dataset owner and wish to include your dataset or model in this library, feel free to post an issue here or make a pull request! ## :beers: Citing & Authors If you find this repository helpful, feel free to cite our publication [BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models](https://arxiv.org/abs/2104.08663): ``` @inproceedings{ thakur2021beir, title={{BEIR}: A Heterogeneous Benchmark for Zero-shot Evaluation of Information Retrieval Models}, author={Nandan Thakur and Nils Reimers and Andreas R{\"u}ckl{\'e} and Abhishek Srivastava and Iryna Gurevych}, booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)}, year={2021}, url={https://openreview.net/forum?id=wCu6T5xFjeJ} } ``` The main contributors of this repository are: - [Nandan Thakur](https://github.com/Nthakur20), Personal Website: [nandan-thakur.com](https://nandan-thakur.com) Contact person: Nandan Thakur, [nandant@gmail.com](mailto:nandant@gmail.com) Don't hesitate to send us an e-mail or report an issue, if something is broken (and it shouldn't be) or if you have further questions. > This repository contains experimental software and is published for the sole purpose of giving additional background details on the respective publication. ## :beers: Collaboration The BEIR Benchmark has been made possible due to a collaborative effort of the following universities and organizations: - [UKP Lab, Technical University of Darmstadt](http://www.ukp.tu-darmstadt.de/) - [University of Waterloo](https://uwaterloo.ca/) - [HuggingFace](https://huggingface.co/) ## :beers: Contributors Thanks go to all these wonderful collaborations for their contribution towards the BEIR benchmark: <!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section --> <!-- prettier-ignore-start --> <!-- markdownlint-disable --> <table> <tr> <td align="center"><a href="https://www.nandan-thakur.com"><img src="https://avatars.githubusercontent.com/u/30648040?v=4" width="100px;" alt=""/><br /><sub><b>Nandan Thakur</b></sub></a></td> <td align="center"><a href="https://www.nils-reimers.de/"><img src="https://avatars.githubusercontent.com/u/10706961?v=4" width="100px;" alt=""/><br /><sub><b>Nils Reimers</b></sub></a></td> <td align="center"><a href="https://www.informatik.tu-darmstadt.de/ukp/ukp_home/head_ukp/index.en.jsp"><img src="https://www.informatik.tu-darmstadt.de/media/ukp/pictures_1/people_1/Gurevych_Iryna_500x750_415x415.jpg" width="100px;" alt=""/><br /><sub><b>Iryna Gurevych</b></sub></a></td> <td align="center"><a href="https://cs.uwaterloo.ca/~jimmylin/"><img src="https://avatars.githubusercontent.com/u/313837?v=4" width="100px;" alt=""/><br /><sub><b>Jimmy Lin</b></sub></a></td> <td align="center"><a href="http://rueckle.net"><img src="https://i1.rgstatic.net/ii/profile.image/601126613295104-1520331161365_Q512/Andreas-Rueckle.jpg" width="100px;" alt=""/><br /><sub><b>Andreas Rücklé</b></sub></a></td> <td align="center"><a href="https://www.linkedin.com/in/abhesrivas"><img src="https://avatars.githubusercontent.com/u/19344566?v=4" width="100px;" alt=""/><br /><sub><b>Abhishek Srivastava</b></sub></a></td> </tr> </table> <!-- markdownlint-restore --> <!-- prettier-ignore-end --> <!-- ALL-CONTRIBUTORS-LIST:END -->


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl beir-1.0.1:

    pip install beir-1.0.1.whl


نصب پکیج tar.gz beir-1.0.1:

    pip install beir-1.0.1.tar.gz