معرفی شرکت ها


behavelet-0.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

behavelet: a wavelet transform for mapping behavior
ویژگی مقدار
سیستم عامل -
نام فایل behavelet-0.0.2
نام behavelet
نسخه کتابخانه 0.0.2
نگهدارنده ['Jacob Graving <jgraving@gmail.com>']
ایمیل نگهدارنده ['jgraving@gmail.com']
نویسنده Jacob Graving <jgraving@gmail.com>
ایمیل نویسنده jgraving@gmail.com
آدرس صفحه اصلی https://github.com/jgraving/behavelet
آدرس اینترنتی https://pypi.org/project/behavelet/
مجوز Apache 2.0
behavelet: a wavelet transform for mapping behavior ============ <p align="center"> <img src="https://github.com/jgraving/behavelet/blob/master/assets/wavelet.png" max-height:256px> </p> behavelet is a Python implementation of the normalized Morlet wavelet transform for behavioral mapping from [Berman et al. (2014)](https://doi.org/10.1098/rsif.2014.0672). It runs on the CPU using numpy and multiprocessing or on the GPU using [CuPy](https://github.com/cupy/cupy). This code was adapted to Python using [the original MotionMapper code](https://github.com/gordonberman/MotionMapper) from Gordon Berman et al. Quick Start ------------ Here is an example of how to use behavelet on the CPU with a randomly generated dataset: ```python from behavelet import wavelet_transform import numpy as np n_samples = 10000 n_features = 10 X = np.random.normal(size=(n_samples, n_features)) freqs, power, X_new = wavelet_transform(X, n_freqs=25, fsample=100., fmin=1., fmax=50.) ``` use the `n_jobs` argument to parallelize the computations across multiple threads: ```python freqs, power, X_new = wavelet_transform(X, n_freqs=25, fsample=100., fmin=1., fmax=50., n_jobs=-1) ``` and use the `gpu` argument to run it on the GPU with [CuPy](https://github.com/cupy/cupy): ```python freqs, power, X_new = wavelet_transform(X, n_freqs=25, fsample=100., fmin=1., fmax=50., gpu=True) ``` - `freqs` is a `(n_freqs,)` shaped array of the frequencies used for the wavelet transform - `power` is a `(n_samples,)` shaped array with the total power for the wavelet coefficients in each sample - `X_new` is a `(n_samples, n_freqs*n_features)` shaped array of the wavelet coefficients. Citation --------- If you use behavelet for your research, please cite our DOI: [![DOI](https://zenodo.org/badge/204273245.svg)](https://zenodo.org/badge/latestdoi/204273245) @misc{graving2019behavelet, title={behavelet: a wavelet transform for mapping behavior}, author={Graving, Jacob M}, month={aug}, year={2019}, doi={10.5281/zenodo.3376742}, url={https://doi.org/10.5281/zenodo.3376742} } for the original description of the normalized Morlet wavelet transform see the paper from [Berman et al. (2014)](https://doi.org/10.1098/rsif.2014.0672): @article{berman2014mapping, title={Mapping the stereotyped behaviour of freely moving fruit flies}, author={Berman, Gordon J and Choi, Daniel M and Bialek, William and Shaevitz, Joshua W}, journal={Journal of The Royal Society Interface}, volume={11}, number={99}, pages={20140672}, year={2014}, publisher={The Royal Society} } Installation ------------ Install the latest stable version with pip: ```bash pip install behavelet ``` Install the development version with pip: ```bash pip install git+https://www.github.com/jgraving/behavelet.git ``` You can also install from within Python rather than using the command line, either from within Jupyter or another IDE, to ensure it is installed in the correct working environment: ```python import sys !{sys.executable} -m pip install git+https://www.github.com/jgraving/behavelet.git ``` If you wish to use the GPU version, you must [install CuPy manually](https://github.com/cupy/cupy#installation). Development ------------- Please submit bugs or feature requests to the [GitHub issue tracker](https://github.com/jgraving/behavelet/issues/new). Please limit reported issues to the behavelet codebase and provide as much detail as you can with a minimal working example if possible. If you experience problems with [CuPy](https://github.com/cupy/cupy), such as installing CUDA or other dependencies, then please direct issues to their development team. Contributors ------------ behavelet was developed by [Jake Graving](https://github.com/jgraving), and is still being actively developed. Public contributions are welcome. If you wish to contribute, please [fork the repository](https://help.github.com/en/articles/fork-a-repo) to make your modifications and [submit a pull request](https://help.github.com/en/articles/creating-a-pull-request-from-a-fork). License ------------ Released under a Apache 2.0 License. See [LICENSE](https://github.com/jgraving/behavelet/blob/master/LICENSE) for details.


نحوه نصب


نصب پکیج whl behavelet-0.0.2:

    pip install behavelet-0.0.2.whl


نصب پکیج tar.gz behavelet-0.0.2:

    pip install behavelet-0.0.2.tar.gz