معرفی شرکت ها


bed-lookup-1.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Lookup a gene by coordinate from a bed
ویژگی مقدار
سیستم عامل -
نام فایل bed-lookup-1.5
نام bed-lookup
نسخه کتابخانه 1.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Michael Dacre
ایمیل نویسنده mike.dacre@gmail.com
آدرس صفحه اصلی https://github.com/MikeDacre/python_bed_sqlite
آدرس اینترنتی https://pypi.org/project/bed-lookup/
مجوز MIT
################# Python Bed Lookup ################# Allows very fast searching of a bed file of any size by gene/snp location. For example: .. code:: python from bed_lookup import BedFile b = BedFile('my_bed.bed') gene = b.lookup('chr3', 1000104) This module requires cython, and should work with recent versions of python2 and python3. It can also be used with a pandas dataframe directly: .. code:: python df['new_col'] = b.lookup_df(df, 'chrom', 'pos') Note: with large dataframes, this function can be very slow, but there is a nice trick to speed it up: .. code:: python import numpy as np import pandas as pd from multiprocessing import Pool, cpu_count pool = Pool() b = BedFile('my_bed.bed') df = pd.read_csv('big_table.txt.gz', sep='\t', compression='gzip') dfs = np.array_split(df, cpu_count()) run = [] out = [] # Our chromsome column is 'chrom' and position column is 'pos'. for d in dfs: run.append(pool.apply_async(b.lookup_df, (d, 'chrom', 'pos'))) for r in run: out.append(r.get()) df['new_col'] = pd.concat(out) ************ Installation ************ Installation follows the standard python syntax: .. code:: shell git clone https://github.com/MikeDacre/python_bed_lookup cd python_bed_lookup python setup.py build sudo python setup.py install If you do not have root permission on you device, replace the last line with:: python setup.py install --user ***************************** Running from the command line ***************************** There is a command line script called ``bed_location_lookup`` that will be installed in ``/usr/bin`` if you install globally or in ``~/.local/usr/bin`` if you install for your user only. The sytax for that script is:: bed_location_lookup <bed_file> chr1_1000134 chr2_1859323 .... It will work for any number of gene coordinate arguments. Be aware, that there is a file opening delay when the script is run (for small bed files this will be very small, but for large files it can be a few seconds). It is therefore much more efficient to call a single instance of ``bed_location_lookup`` with a long list of coordinates than it is to call it once per coordinate. For a large number of coordinates this difference can be substantial. ``bed_location_lookup`` has a few other options also, to get those run:: bed_location_lookup -h Note: if you know the bed file is large and a database already exists, you can get considerable speed up by passing the database file instead of the raw bed file. e.g. pass ``bedfile.bed.db`` instead of ``bedfile.bed``. This bypasses the file length check. ************************************* Backend information and customization ************************************* It makes use of a cython optimized dictionary lookup for small bed files and sqlite for larger bed files. Which backend is being used is transparent to the user, simply use the ``lookup()`` function as demonstrated in the example above. The default file size cutoff is ~5 million lines in the bed file, which results in a memory use of 1.2GB for a 5 million line long file. The memory use scales linearly, so setting the limit at 1 million lines will result in about 240MB of memory use. To change the file size cutoff edit the ``_max_len`` variable in ``bed_lookup/__init__.py``. Be aware that the file size limit is actually measured in bytes, for speed purposes. A dictionary of size to file length maps is provided in the ``__init__.py`` file, the default should work fine on most systems. Note that the sqlite backed is very slightly slower for lookups, however the sqlite backend requires that a database exists already. If one does not exist (the expected name is the bed file name followed by a ``.db``) already then one is created, and this step can be very slow. Hypothetically this should only be done once. As noted above, when creating a BedFile object, a file length lookup is performed. This lookup can be costly, particularly for gzipped files. To skip this step, simply pass the database file to BedFile(), instead of the bedfile itself. Note: this code will work with either plain text or gzipped files, gzipped files will be slightly slower at load due to the overhead of decompression. For large files where an sqlite database already exists, there will be only a very slight delay relative to the uncompressed bed file (due to file length counting). As the BedFile object is only generated once, any lookups after the creation of this object will be very fast (less than a second) for *any* length of bed file. Smaller files will obvious result in even quicker lookups.


نیازمندی

مقدار نام
- Cython
- numpy


نحوه نصب


نصب پکیج whl bed-lookup-1.5:

    pip install bed-lookup-1.5.whl


نصب پکیج tar.gz bed-lookup-1.5:

    pip install bed-lookup-1.5.tar.gz