معرفی شرکت ها


beastify-0.2.0a0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Partition your alignment into distinct codon positions and non-coding positions
ویژگی مقدار
سیستم عامل -
نام فایل beastify-0.2.0a0
نام beastify
نسخه کتابخانه 0.2.0a0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Anders Gonçalves da Silva
ایمیل نویسنده andersgs@gmail.com
آدرس صفحه اصلی https://github.com/andersgs/beastify
آدرس اینترنتی https://pypi.org/project/beastify/
مجوز -
# beastify: Generate input file for BEAST from whole-genome alignmennt ## Background Sometimes you want to partiion your alignment in to distinct codon positions (i.e., 1, 2, and 3), and you want to also model non-coding positions in your BEAST analysis. `beastify` does that for you. It will: 1. Figure out all the codon positions in your reference (including overlapping positions) 2. Optionally, label your sequences with any metadata (e.g., dates) 3. Optionally, allows you to remove one or more positions from the alignment 4. Optionally, allows you to mask positions form the alignment 5. Optionally, allows you to sub-sample the alignment (if you want to work on a smaller dataset to test your models before throwing the whole kitchen at BEAST). 6. Output a NEXUS files with the partitions ready for running BEAUTi. Partitions are labelled: 1. For the first codon position 2. For the second codon position 3. For the third codon position 4. For any overlapping codons (sometimes CDS annotations overlap because sometimes bacterial genes will share codons) 5. If position is not found in a CDS. ## Installation ### Dependencies - Python >=3.6 - Click - Pandas - Numpy - BioPython ### Using pip ``` pip3 install beastify ``` ### Testing your installation ``` beastify --test ``` ## Input 1. Genbank reference 2. `snippy` \*.consensus.subs.fa files 3. List of genes to include in the final alignment 4. N (optional) --- random number of genes to select and include ### Command list ``` --out TEXT Outfile name (default: out.nexus) --info TEXT Path to a tab-delimited file with two or more columns. The first column has the isolate ID, and other columns have dates, location, etc. The information will be added to the isolate ID in the same order as the columns --inc_ref Whether to include the reference in the final out file (default: False) --aln_file TEXT A sequence alignment file to give in lieu of folder with snippy output. --aln_file_format TEXT If providing an alignment file with --aln_file, set the format of the alignment. Any format supported by BioPython:AlignIO could be valid. Default: fasta. Tested: fasta. --subsample INTEGER Subsample X number of bases at random from each partition. default: all bases --subsample_seed INTEGER Set the seed when subsampling sites. Default:42 --parts TEXT Comma-separated list of partitions to include. default:1,2,3,4,5 --test Run beastify tests and exit --mask TEXT A BED file indicating regions to mask from the genome --version Show the version and exit. --help Show this message and exit. ``` ## Output A `nexus` formatted file ready for `beast`. ## Script outline 1. Parse coordinates of genes from Genbank into a `Genes` Class - Methods: - load_features: a method to load the Genbank features into a dictionary. **Method should check that there the length is a multiple of 3**, and that the **start** and **end** codons are in place. **stop** codon should be stripped. - parse_snippycore: a method to load the snippy core.tab data and identify all variable SNPs among the data that are in coding regions --- has options to return a 'random' sample of size N genes, 'top' genes with the most SNPs, with the N top genes with most SNPs. - Data: - features: a dictionary with key = genename and value set by seqFeature object --- **IF** N is provided, only keep a random set of gene*coords of size \_N* 2. Load `snippy` alignment into an `Isolate` Class - Methods: - load_fasta: will load the sequence into the object - cat_genes: given an isolate id, and a genes object, return a concatenated sequence (NOT IMPLEMENTED YET) - get_gene: return a string with the sequence for the gene specified by gene_id using a `Genes` object - **str**: print the sequence ID and length, if there is one - **getitem**: return the sequence string associated with the key - add_dates: the user supplies a table of isolate IDs, and dates in a format suitable for BEAST, and the script adds them to the identifier - Data: - seq: A SeqRecord - id: The isolate id - genes: a dictionary with 'gene_name' as keys and sequence string as value 3. `Collection` class to store all the `Isolate` objects - Methods: - load_isolates: given a list of isolate files, creates and stores individual `Isolate` objects for each. - gen_align: given a `Genes` object, generate the alignment --- uses `cat_genes` - **getitem**: given an isolate ID as a key, return the `Isolate` object - Data: - isolates: a dictionary with isolate id as keys and `Isolate` objects as values


نیازمندی

مقدار نام
- click
- pandas
- numpy
- biopython


نحوه نصب


نصب پکیج whl beastify-0.2.0a0:

    pip install beastify-0.2.0a0.whl


نصب پکیج tar.gz beastify-0.2.0a0:

    pip install beastify-0.2.0a0.tar.gz