معرفی شرکت ها


bcselector-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python package to help you in variable selection.
ویژگی مقدار
سیستم عامل -
نام فایل bcselector-0.0.9
نام bcselector
نسخه کتابخانه 0.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Tomasz Klonecki
ایمیل نویسنده tomasz.klonecki@gmail.com
آدرس صفحه اصلی https://github.com/Kaketo/bcselector
آدرس اینترنتی https://pypi.org/project/bcselector/
مجوز MIT
========== Bcselector ========== .. image:: https://raw.githubusercontent.com/Kaketo/bcselector/master/docs/img/logo_small.png .. image:: https://img.shields.io/badge/python-3.7-blue.svg :target: http://badge.fury.io/py/bcselector .. image:: https://badge.fury.io/py/bcselector.svg :target: https://badge.fury.io/py/bcselector .. image:: https://travis-ci.com/Kaketo/bcselector.svg?branch=master :target: https://travis-ci.com/Kaketo/bcselector .. image:: https://codecov.io/gh/Kaketo/bcselector/branch/master/graph/badge.svg :target: https://codecov.io/gh/Kaketo/bcselector .. image:: https://img.shields.io/badge/License-MIT-yellow.svg :target: https://opensource.org/licenses/MIT * Documentation: https://kaketo.github.io/bcselector. * Repository: https://github.com/kaketo/bcselector. What is it? ----------- Feature selection is a crucial problem in many machine learning tasks. Usually the considered variables are cheap to collect and store but in some situations the acquisition of feature values can be problematic. For example, when predicting the occurrence of the disease we may consider the results of some diagnostic tests which can be very expensive. The existing feature selection methods usually ignore costs associated with the considered features. The goal of cost- sensitive feature selection is to select a subset of features which allow to predict the target variable (e.g. occurrence of the diseases) successfully within the assumed budget. The main purpose of this package is to provide filter methods of feature selection based on information theory and to propose new variants of these methods considering feature costs. Installation ------------ bcselector can be installed from [PyPI] (https://pypi.org/project/bcselector):: pip install bcselector Quickstart ---------- First of all we must have a dataset with classification target variable and a cost assigned to each feature. Good sample data could be `hepatitis <https://archive.ics.uci.edu/ml/citation_policy.html>`_ from *UCI* repository [1]. Lets say that that we have dataset loaded to Python, we need to create `Selector` class and call `fit` method with proper arguments on it: .. code-block:: python from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score from bcselector.variable_selection import FractionVariableSelector from bcselector.datasets import load_sample # Arguments for feature selection # r - cost scaling parameter, # beta - kwarg for j_criterion_func, # model - model that is fitted on data. r = 1 beta = 0.5 model = LogisticRegression(max_iter=1000) # Data X,y,costs = load_sample() # Feature selection fvs = FractionVariableSelector() fvs.fit(data=X, target_variable=y, costs=costs, r=r, j_criterion_func='cife', beta=beta) Now we can obtain feature selection results by calling simple getter: .. code-block:: python fvs.get_cost_results() Or we can score and plot our results with any sklearn model and classification metric: .. code-block:: python fvs.score(model=model, scoring_function=roc_auc_score) fvs.plot_scores(compare_no_cost_method=True, model=model, annotate=True) Which results in BC-plot: .. image:: https://raw.githubusercontent.com/Kaketo/bcselector/master/docs/img/bc_plot.png On *OX axis* we have accumulated cost and on *OY axis* we see test set score of currently selected set of features: - **Blue line** is cost-sensitive method selected features order. - **Red line** is NO-cost method selected features order. - **Blue vertical line** is maximum budget avaliable (user parameter) Small numbers above or below the curve are indexes of selected features. Therefore we can see that first variable selected by cost-sensitive method is on 14th column in dataset *X*. Bibliography ------------ - [1] Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. Citations --------- TBD


نیازمندی

مقدار نام
>=1.18.1 numpy
>=3.2.1 matplotlib
>=1.0.3 pandas
>=0.20.1 scikit-learn
>=4.42.1 tqdm
>=0.2.2 pyitlib
==0.7.3 adjustText


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl bcselector-0.0.9:

    pip install bcselector-0.0.9.whl


نصب پکیج tar.gz bcselector-0.0.9:

    pip install bcselector-0.0.9.tar.gz