معرفی شرکت ها


bciavm-1.21.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

bciAVM is a machine learning pipeline used to predict property prices.
ویژگی مقدار
سیستم عامل -
نام فایل bciavm-1.21.9
نام bciavm
نسخه کتابخانه 1.21.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Mike Casale | Blockchain Climate Institute
ایمیل نویسنده mike.casale@blockchainclimate.org
آدرس صفحه اصلی https://github.com/BlockchainClimateInstitute/microservice_price
آدرس اینترنتی https://pypi.org/project/bciavm/
مجوز -
<p align="center"> <img width=50% src="https://blockchainclimate.org/wp-content/uploads/2020/11/cropped-BCI_Logo_LR-400x333.png" alt="bciAVM" height="300"/> </p> [![PyPI](https://badge.fury.io/py/bciavm.svg?maxAge=2592000)](https://badge.fury.io/py/bciavm) [![PyPI Stats](https://img.shields.io/badge/bciavm-avm-blue)](https://pypistats.org/packages/bciavm) The Blockchain & Climate Institute (BCI) is a progressive think tank providing leading expertise in the deployment of emerging technologies for climate and sustainability actions. As an international network of scientific and technological experts, BCI is at the forefront of innovative efforts, enabling technology transfers, to create a sustainable and clean global future. # Automated Valuation Model (AVM) #### About AVM is a term for a service that uses mathematical modeling combined with databases of existing properties and transactions to calculate real estate values. The majority of automated valuation models (AVMs) compare the values of similar properties at the same point in time. Many appraisers, and even Wall Street institutions, use this type of model to value residential properties. (see [What is an AVM](https://www.investopedia.com/terms/a/automated-valuation-model.asp) Investopedia.com) For more detailed info about the AVM, please read the **About** paper in the [resources directory](https://github.com/gcode-ai/bciavm/blob/4e0816b25dae021629e406194a72d3d805faecf0/resources/2021-BCI-AVM-About.pdf). ### Valuation Process <img src="https://bciavm.s3.amazonaws.com/valuation_process_updated.jpg" height="225px" float="middle" > **Key Functionality** * **Supervised algorithms** * **Tree-based & deep learning algorithms** * **Feature engineering derived from small clusters of similar properties** * **Ensemble (value blending) approaches** ## Set the required AWS Environment Variables ```shell export ACCESS_KEY=YOURACCESS_KEY export SECRET_KEY=YOURSECRET_KEY export BUCKET_NAME=bci-transition-risk-data export TABLE_DIRECTORY=/dbfs/FileStore/tables/ ``` ## Install [from PyPI](https://pypi.org/project/bciavm/) ```shell pip install bciavm ``` ## Start #### Load the training data from the BCI S3 bucket ```python from bciavm.core.config import your_bucket from bciavm.utils.bci_utils import ReadParquetFile, get_postcodeOutcode_from_postcode, get_postcodeArea_from_outcode, drop_outliers, preprocess_data import pandas as pd dfPricesEpc = pd.DataFrame() dfPrices = pd.DataFrame() yearArray = ['2020', '2019'] for year in yearArray: singlePriceEpcFile = pd.DataFrame(ReadParquetFile(your_bucket, 'epc_price_data/byDate/2021-02-04/parquet/' + year)) dfPricesEpc = dfPricesEpc.append(singlePriceEpcFile) dfPricesEpc['POSTCODE_OUTCODE'] = dfPricesEpc['Postcode'].apply(get_postcodeOutcode_from_postcode) dfPricesEpc['POSTCODE_AREA'] = dfPricesEpc['POSTCODE_OUTCODE'].apply(get_postcodeArea_from_outcode) dfPricesEpc.groupby('TypeOfMatching_m').count()['Postcode'] ``` #### Preprocess & split the data for training/testing ```python import bciavm X_train, X_test, y_train, y_test = bciavm.preprocess_data(dfPricesEpc) ``` #### Build the pipeline and get the default pipeline parameters ```python from bciavm.pipelines import RegressionPipeline class AVMPipeline(RegressionPipeline): custom_name = 'AVM Pipeline' component_graph = { "Preprocess Transformer": ["Preprocess Transformer"], 'Imputer': ['Imputer', "Preprocess Transformer"], 'One Hot Encoder': ['One Hot Encoder', "Imputer"], 'K Nearest Neighbors Regressor': ['K Nearest Neighbors Regressor', 'One Hot Encoder'], "XGBoost Regressor": ["XGBoost Regressor", 'One Hot Encoder'], 'MultiLayer Perceptron Regressor': ['MultiLayer Perceptron Regressor', 'One Hot Encoder'], 'Final Estimator': ['Linear Regressor', "XGBoost Regressor", 'MultiLayer Perceptron Regressor', 'K Nearest Neighbors Regressor'] } avm_pipeline = AVMPipeline(parameters={}) avm_pipeline.parameters ``` #### Fit the pipeline ```python avm_pipeline.fit(X_train, y_train) ``` #### Score the pipeline ```python avm_pipeline.score( X_test, y_test, objectives=['MAPE', 'MdAPE', 'ExpVariance', 'MaxError', 'MedianAE', 'MSE', 'MAE', 'R2', 'Root Mean Squared Error']) ``` ## Next Steps Read more about bciAVM on our [documentation page](https://blockchainclimate.org/thought-leadership/#blog): ### How does it relate to BCI Risk Modeling? <img src="https://bciavm.s3.amazonaws.com/crrem.jpg" height="480px" float="middle"> ## Technical & financial support provided by CCG Analytics <a href="https://www.ccganalytics.com"> <img src="https://bciavm.s3.amazonaws.com/ccg_logo.jpg" alt="ccganalytics.com" height="225px" float="middle"/> </a>


نحوه نصب


نصب پکیج whl bciavm-1.21.9:

    pip install bciavm-1.21.9.whl


نصب پکیج tar.gz bciavm-1.21.9:

    pip install bciavm-1.21.9.tar.gz