معرفی شرکت ها


bccd-2.9.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

B-NMR/B-NQR Beamspot Image Viewer and Analysis
ویژگی مقدار
سیستم عامل -
نام فایل bccd-2.9.1
نام bccd
نسخه کتابخانه 2.9.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Derek Fujimoto
ایمیل نویسنده fujimoto@phas.ubc.ca
آدرس صفحه اصلی https://github.com/dfujim/bccd
آدرس اینترنتی https://pypi.org/project/bccd/
مجوز -
# Draw and process B-NMR CCD image files ## Installation and Running the GUI * Install with `pip3 install --user bccd` from [pypi](https://pypi.org/project/bccd/). * Run with `bccd`. Note that `bccd` uses `rsync` to copy all files from the machines which operate the cameras. These machines are password protected and the passwords must be entered on every use, unless you give your public key to these devices. To do that, do: * Create a public key if you don't have one already: `ssh-keygen -t rsa`. On prompt enter no password. * Copy the key to the server using the proper username and password: `ssh-copy-id user@machine.domain` On first usage, `bccd` will need to transfer all the files from these machines. This may take some time, please be patient. On subsequent usages, `bccd` will only update its list of files so the process will be much faster. These files are stored in `$HOME/.bccd`. ## `bccd.fits` Reference Constructor: ```python fits(filename,rescale_pixels=True) ``` Functions: ```python # look for shapes in image detect_lines(sigma=1,min_length=50,min_gap=3,theta=None,nlines=np.inf,draw=True) detect_hlines(sigma=1,min_length=50,min_gap=3,nlines=np.inf,draw=True,**kwargs) detect_circles(rad_range,nlines=1,sigma=1,draw=True) # drawing and visualization draw(black=0,alpha=1,cmap='Greys',imap=True) draw_2Dfit(fn,*pars,levels=10,cmap='jet') draw_contour(nlevels=5,alpha=1,cmap='Greys',imap=True) draw_edges(sigma=1,alpha=1,cmap='Greys',imap=True) draw_sobel(alpha=1,cmap='Greys',imap=False) # fitting fit2D(function,**fitargs) fit_gaussian2D(draw=True, get_p0_from_center=False, **fitargs) # processing get_center(draw=True) get_cm(draw=True) get_gaussian2D_overlap(ylo,yhi,xlo,xhi) # worker functions read(filename,rescale_pixels=True) set_black(black) set_mask(mask) ``` Data fields: ``` black: float, pixel value corresponding to black (zero) data: 2D numpy array, pixel values data_original: numpy array, pixel values header: dict, header information mask: (x,y,r) specifying circle to mask on result_center: (par,names) fitting results result_cm: (par,names) center of mass results result_fit2D: (par,cov) fitting results result_gaussian2D: (par,cov,names) fitting results result_gaussian2D_overlap: float, overlap ``` Some useful colourmap names: ``` Greys Purples Yellows Blues Oranges Reds Greens ``` Parameter descriptions ``` alpha: float, image transparency. Range: [0,1]. black: float, value to set to black, all pixels of lower value raised to this level. Use to clean up noise. cmap: str, color map to color the image. Ex: "Reds", "Greens", etc. draw: bool, if true, draw output filename: str, path to .fits file fitargs: **dict, arguments passed to curve_fit fn: function handle, function to draw imap: bool, if True, invert color map colours levels: int, number of contour levels to draw kwargs: **dict, unused mask: tuple, exclude all pixels outside of circle from draw or calculation. (x0,y0,r) min_length: float, minimum length of lines to find, in pixels min_gap: float, maximum acceptable distance between line pixels which do not signify breaking the line nlines: int, number of shapes to find pars: *tuple, parameters passed to fn. rad_range: tuple, radius range to seach in (r_lo, r_hi) rescale_pixels: bool, pixels are intrinsically asymmetric. Rescale image such that the pixels are square, interpolating pixel values with 3rd order spline. shape: tuple, shape of the image (number of pixels x,y) sigma: float, standard deviation of rolling Gaussian filter, smoothing image features. theta: float, list of acceptable angles for the lines to point xlo: function handle, lower integration bound [inner] xlhi: function handle, upper integration bound [inner] ylo: float, lower integration bound [outer] yhi: float, upper integration bound [outer] ``` ## `bccd.functions` ```python gaussian2D(x,y,x0,y0,sigmax,sigmay,amp,theta=0) ``` Parameter descriptions ``` amp: float, unused in favour of normalized amplitude (present for ease of use) sx,sy: float, standard deviation theta: float, angle of rotation x0,y0: float, gaussian mean location ```


نحوه نصب


نصب پکیج whl bccd-2.9.1:

    pip install bccd-2.9.1.whl


نصب پکیج tar.gz bccd-2.9.1:

    pip install bccd-2.9.1.tar.gz