معرفی شرکت ها


bbaug-0.4.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Bounding box augmentation for PyTorch with Google's Brain Team augmentation policies
ویژگی مقدار
سیستم عامل -
نام فایل bbaug-0.4.2
نام bbaug
نسخه کتابخانه 0.4.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Harpal Sahota
ایمیل نویسنده harpal28sahota@gmail.com
آدرس صفحه اصلی https://github.com/harpalsahota/bbaug
آدرس اینترنتی https://pypi.org/project/bbaug/
مجوز -
![Alt text](./coverage.svg) ![Master Branch Dist CI](https://github.com/harpalsahota/bbaug/workflows/Master%20Branch%20Dist%20CI/badge.svg?branch=master) # BBAug BBAug is a Python package for the implementation of Google’s Brain Team’s bounding box augmentation policies. The package is aimed for PyTorch users who wish to use these policies in the augmentation of bounding boxes during the training of a model. Currently all 4 versions of the policies are implemented. This package builds on top of the excellent image augmentations package [imgaug](https://github.com/aleju/imgaug). **References** - [Paper](https://arxiv.org/abs/1906.11172) - [Tensorflow Policy Code](https://github.com/tensorflow/tpu/blob/2264f53d95852efbfb82ea27f03ca749e1205968/models/official/detection/utils/autoaugment_utils.py) ## Features - [x] Implementation of all 4 policies - [x] Custom policies - [x] Custom augmentations - [x] Bounding boxes are removed if they fall outside of the image* - [x] Boudning boxes are clipped if they are partially outside the image* - [x] Augmentations that imply direction e.g. rotation is randomly determined *Doest not happen for bounding box specific augmentations ## To Do - [x] ~~Implementation of version 2 of policies~~ (implemented in v0.2) - [x] ~~Implementation of version 1 of policies~~ (implemented in v0.2) - [x] ~~For bounding box augmentations apply the probability individually for each box not collectively~~ (implemented in v0.4) ## Installation Installation is best done via pip: > pip install bbaug ### Prerequisites - Python 3.6+ - PyTorch - Torchvision ## Description and Usage For detailed description on usage please refer to the Python notebooks provided in the `notebooks` folder. A augmentation is define by 3 attributes: - **Name**: Name of the augmentation - **Probability**: Probability of augmentation being applied - **Magnitude**: The degree of the augmentation (values are integers between 0 and 10) A `sub-policy` is a collection of augmentations: e.g. ```python sub_policy = [('translation', 0.5, 1), ('rotation', 1.0, 9)] ``` In the above example we have two augmentations in a sub-policy. The `translation` augmentation has a probability of 0.5 and a magnitude of 1, whereas the `rotation` augmentation has a probability of 1.0 and a magnitude of 9. The magnitudes do not directly translate into the augmentation policy i.e. a magnitude of 9 does not mean a 9 degrees rotation. Instead, scaling is applied to the magnitude to determine the value passed to the augmentation method. The scaling varies depending on the augmentation used. A `policy` is a set of sub-policies: ```python policies = [ [('translation', 0.5, 1), ('rotation', 1.0, 9)], [('colour', 0.5, 1), ('cutout', 1.0, 9)], [('rotation', 0.5, 1), ('solarize', 1.0, 9)] ] ``` During training, a random policy is selected from the list of sub-policies and applied to the image and because each augmentation has it's own probability this adds a degree of stochasticity to training. ### Augmentations Each augmentation contains a string referring to the name of the augmentation. The `augmentations` module contains a dictionary mapping the name to a method reference of the augmentation. ```python from bbaug.augmentations import NAME_TO_AUGMENTATION print(NAME_TO_AUGMENTATION) # Shows the dictionary of the augmentation name to the method reference ``` Some augmentations are applied only to the bounding boxes. Augmentations which have the suffix `BBox` are only applied to the bounding boxes in the image. #### Listing All Policies Available To obtain a list of all available polices run the `list_policies` method. This will return a list of strings containing the function names for the policy sets. ```python from bbaug.policies import list_policies print(list_policies()) # List of policies available ``` #### Listing the policies in a policy set ```python from bbaug.policies import policies_v3 print(policies_v3()) # Will list all the polices in version 3 ``` #### Visualising a Policy To visulaise a policy on a single image a `visualise_policy` method is available in the `visuals` module. ```python from bbaug.visuals import visualise_policy visualise_policy( 'path/to/image', 'save/dir/of/augmentations', bounding_boxes, # Bounding boxes is a list of list of bounding boxes in pixels (int): e.g. [[x_min, y_min, x_man, y_max], [x_min, y_min, x_man, y_max]] labels, # Class labels for the bounding boxes as an iterable of ints eg. [0, 5] policy, # the policy to visualise name_to_augmentation, # (optional, default: augmentations.NAME_TO_AUGMENTATION) The dictionary mapping the augmentation name to the augmentation method ) ``` #### Policy Container To help integrate the policies into training a `PolicyContainer` class available in the `policies` module. The container accepts the following inputs: - **policy_set** (required): The policy set to use - **name_to_augmentation** (optional, default: `augmentations.NAME_TO_AUGMENTATION`): The dictionary mapping the augmentation name to the augmentation method - **return_yolo** (optional, default: `False`): Return the bounding boxes in YOLO format otherwise `[x_min, y_min, x_man, y_max]` in pixels is returned Usage of the policy container: ```python from bbaug import policies # select policy v3 set aug_policy = policies.policies_v3() # instantiate the policy container with the selected policy set policy_container = policies.PolicyContainer(aug_policy) # select a random policy from the policy set random_policy = policy_container.select_random_policy() # Apply the augmentation. Returns the augmented image and bounding boxes. # Image is a numpy array of the image # Bounding boxes is a list of list of bounding boxes in pixels (int). # e.g. [[x_min, y_min, x_man, y_max], [x_min, y_min, x_man, y_max]] # Labels are the class labels for the bounding boxes as an iterable of ints e.g. [1,0] img_aug, bbs_aug = policy_container.apply_augmentation(random_policy, image, bounding_boxes, labels) # image_aug: numpy array of the augmented image # bbs_aug: numpy array of augmneted bounding boxes in format: [[label, x_min, y_min, x_man, y_max],...] ``` ## Policy Implementation The policies implemented in `bbaug` are shown below. Each column represents a different run for that given sub-policy as each augmentation in the sub-policy has it's own probability this results in variations between runs. #### Version 0 These are the policies used in the paper. ![image](assets/images/policy_v0/v0_0.png) ![image](assets/images/policy_v0/v0_1.png) ![image](assets/images/policy_v0/v0_2.png) ![image](assets/images/policy_v0/v0_3.png) ![image](assets/images/policy_v0/v0_4.png) #### Version 1 ![image](assets/images/policy_v1/v1_0.png) ![image](assets/images/policy_v1/v1_1.png) ![image](assets/images/policy_v1/v1_2.png) ![image](assets/images/policy_v1/v1_3.png) ![image](assets/images/policy_v1/v1_4.png) ![image](assets/images/policy_v1/v1_5.png) ![image](assets/images/policy_v1/v1_6.png) ![image](assets/images/policy_v1/v1_7.png) ![image](assets/images/policy_v1/v1_8.png) ![image](assets/images/policy_v1/v1_9.png) ![image](assets/images/policy_v1/v1_10.png) ![image](assets/images/policy_v1/v1_11.png) ![image](assets/images/policy_v1/v1_12.png) ![image](assets/images/policy_v1/v1_13.png) ![image](assets/images/policy_v1/v1_14.png) ![image](assets/images/policy_v1/v1_15.png) ![image](assets/images/policy_v1/v1_16.png) ![image](assets/images/policy_v1/v1_17.png) ![image](assets/images/policy_v1/v1_18.png) ![image](assets/images/policy_v1/v1_19.png) #### Version 2 ![image](assets/images/policy_v2/v2_0.png) ![image](assets/images/policy_v2/v2_1.png) ![image](assets/images/policy_v2/v2_2.png) ![image](assets/images/policy_v2/v2_3.png) ![image](assets/images/policy_v2/v2_4.png) ![image](assets/images/policy_v2/v2_5.png) ![image](assets/images/policy_v2/v2_6.png) ![image](assets/images/policy_v2/v2_7.png) ![image](assets/images/policy_v2/v2_8.png) ![image](assets/images/policy_v2/v2_9.png) ![image](assets/images/policy_v2/v2_10.png) ![image](assets/images/policy_v2/v2_11.png) ![image](assets/images/policy_v2/v2_12.png) ![image](assets/images/policy_v2/v2_13.png) ![image](assets/images/policy_v2/v2_14.png) #### Version 3 ![image](assets/images/policy_v3/v3_0.png) ![image](assets/images/policy_v3/v3_1.png) ![image](assets/images/policy_v3/v3_2.png) ![image](assets/images/policy_v3/v3_3.png) ![image](assets/images/policy_v3/v3_4.png) ![image](assets/images/policy_v3/v3_5.png) ![image](assets/images/policy_v3/v3_6.png) ![image](assets/images/policy_v3/v3_7.png) ![image](assets/images/policy_v3/v3_8.png) ![image](assets/images/policy_v3/v3_9.png) ![image](assets/images/policy_v3/v3_10.png) ![image](assets/images/policy_v3/v3_11.png) ![image](assets/images/policy_v3/v3_12.png) ![image](assets/images/policy_v3/v3_13.png) ![image](assets/images/policy_v3/v3_14.png)


نیازمندی

مقدار نام
- imgaug


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl bbaug-0.4.2:

    pip install bbaug-0.4.2.whl


نصب پکیج tar.gz bbaug-0.4.2:

    pip install bbaug-0.4.2.tar.gz