معرفی شرکت ها


bayex-0.1.0a0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Bayesian Optimization with Gaussian Processes powered by JAX
ویژگی مقدار
سیستم عامل -
نام فایل bayex-0.1.0a0
نام bayex
نسخه کتابخانه 0.1.0a0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Albert Alonso
ایمیل نویسنده alonfnt@pm.me
آدرس صفحه اصلی https://github.com/alonfnt/bayex
آدرس اینترنتی https://pypi.org/project/bayex/
مجوز -
# BAYEX: Bayesian Optimization powered by JAX [![tests](https://github.com/alonfnt/bayex/actions/workflows/tests.yml/badge.svg)](https://github.com/alonfnt/bayex/actions/workflows/tests.yml) Bayex is a high performance Bayesian global optimization library using Gaussian processes. In contrast to existing Bayesian optimization libraries, Bayex is designed to use JAX as its backend. Instead of relaying on external libraries, Bayex only relies on JAX and its custom implementations, without requiring importing massive libraries such as `sklearn`. ## What is Bayesian Optimization? Bayesian Optimization (BO) methods are useful for optimizing functions that are expensive to evaluate, lack an analytical expression and whose evaluations can be contaminated by noise. These methods rely on a probabilistic model of the objective function, typically a Gaussian process (GP), upon which an acquisition function is built. The acquisition function guides the optimization process and measures the expected utility of performing an evaluation of the objective at a new point. ## Why JAX? Using JAX as a backend removes some of the limitations found on Python, as it gives us direct mapping to the XLA compiler. XLA compiles and runs the JAX code into several architectures such as CPU, GPU and TPU without hassle. But the device agnostic approach is not the reason to back XLA for future scientific programs. XLA provides with optimizations under the hood such as Just-In-Time compilation and automatic parallelization that make Python (with a NumPy-like approach) a suitable candidate on some High Performance Computing scenarios. Additionally, JAX provides Python code with automatic differentiation, which helps identify the conditions that maximize the acquisition function. ## Installation Bayex can be installed using [PyPI](https://pypi.org/project/bayex/) via `pip`: ``` pip install bayex ``` or from GitHub directly ``` pip install git+git://github.com/alonfnt/bayex.git ``` For more advance instructions please refer to the [installation guide](INSTALLATION.md). ## Usage Using Bayex is very straightforward: ```python import bayex def f(x, y): return -y ** 2 - (x - y) ** 2 + 3 * x / y - 2 constrains = {'x': (-10, 10), 'y': (0, 10)} optim_params = bayex.optim(f, constrains=constrains, seed=42, n=10) ``` showing the results can be done with ```python >> bayex.show_results(optim_params, min_len=13) #sample target x y 1 -9.84385 2.87875 3.22516 2 -307.513 -6.13013 8.86493 3 -19.2197 6.8417 1.9193 4 -43.6495 -3.09738 2.52383 5 -58.9488 2.63803 6.54768 6 -64.8658 4.5109 7.47569 7 -78.5649 6.91026 8.70257 8 -9.49354 5.56705 1.43459 9 -9.59955 5.60318 1.39322 10 -15.4077 6.37659 1.5895 11 -11.7703 5.83045 1.80338 12 -11.4169 2.53303 3.32719 13 -8.49429 2.67945 3.0094 14 -9.17395 2.74325 3.11174 15 -7.35265 2.86541 2.88627 ``` we can then obtain the maximum value found using ```python >> optim_params.target -7.352654457092285 ``` as well as the input parameters that yield it ```python >> optim_params.params {'x': 2.865405, 'y': 2.8862667} ``` ## Contributing Everyone can contribute to Bayex and we welcome pull requests as well as raised issues. Please refer to this [contribution guide](CONTRIBUTING.md) on how to do it. ## References 1. [A Tutorial on Bayesian Optimization](https://arxiv.org/abs/1807.02811) 2. [BayesianOptimization Library](https://github.com/fmfn/BayesianOptimization) 3. [JAX: Autograd and XLA](https://github.com/google/jax)


نیازمندی

مقدار نام
>=0.2.18,<0.3.0 jax
>=0.1.69,<0.2.0 jaxlib


زبان مورد نیاز

مقدار نام
>=3.9,<4.0 Python


نحوه نصب


نصب پکیج whl bayex-0.1.0a0:

    pip install bayex-0.1.0a0.whl


نصب پکیج tar.gz bayex-0.1.0a0:

    pip install bayex-0.1.0a0.tar.gz