معرفی شرکت ها


battlesim-0.3.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A python package for simulating battles and visualizing them in animation
ویژگی مقدار
سیستم عامل -
نام فایل battlesim-0.3.7
نام battlesim
نسخه کتابخانه 0.3.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Gregory Parkes
ایمیل نویسنده gregorymparkes@gmail.com
آدرس صفحه اصلی https://github.com/gregparkes/battlesim
آدرس اینترنتی https://pypi.org/project/battlesim/
مجوز GPL-3.0
.. -* mode: rst -*- battlesim: Modelling and animating simulated battles between units in Python. ============================================================================= |pypi|_ |last_commit|_ |repo_size|_ |replit|_ .. |pypi| image:: https://img.shields.io/pypi/v/battlesim .. _pypi: https://img.shields.io/pypi/v/battlesim .. |last_commit| image:: https://img.shields.io/github/last-commit/gregparkes/BattleSimulator .. _last_commit: https://img.shields.io/github/last-commit/gregparkes/BattleSimulator .. |repo_size| image:: https://img.shields.io/github/repo-size/gregparkes/BattleSimulator .. _repo_size: https://img.shields.io/github/repo-size/gregparkes/BattleSimulator .. |replit| image:: https://repl.it/badge/github/gregparkes/BattleSimulator .. _replit: https://repl.it/github/gregparkes/BattleSimulator Want to watch arrows move and attack each other? Then look no further than this **BattleSimulator** we provide! Users familiar with `Totally Accurate Battle Simulator <https://steamcommunity.com/app/508440>`__ will hopefully love this package as a lot of the basic ideas are derived from this. .. image:: simulations/main.gif :alt: Image not found :align: center Main Features ------------- Here are just a few things that ``battlesim`` aims to do well: - Formulate your simulation in a few lines of code from scratch. - Scales up to thousands (and 10s of thousands) of units - Flexibility: unit values are taken from a data file with flexible AI options - Performance: Just-in-time compiling (JIT) can manage thousands of units - Visualisation: Animations can be customized to change look-and-feel Installation ------------ ``battlesim`` requires the following `dependencies <environment.yml>`__: - python (>= 3.8) - numpy (>= 1.11.0) - pandas (>= 0.25.1) - matplotlib (>= 3.1.1) - numba (>= 0.45) With the following for exporting the animation as a gif: - ffmpeg (>=4.2) The following packages are not required but significantly improve the usage of this package. If you are unfamiliar with the Jupyter project see `here <https://jupyter.org/>`__: - jupyter (1.0.0) From PyPI ~~~~~~~~~ If you have working versions of the dependencies, similarly install using `pip <https://pypi.org/project/battlesim/>`__ (version 0.3.7):: pip install battlesim We recommend updating the dependencies yourself using conda rather than through pip because conda manages the dependencies better, but pip will do it for you. See the ``environment.yml`` file for dependencies. From Cloning the GitHub Repository ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Alternatively if you are cloning this `GitHub repository <https://github.com/gregparkes/BattleSimulator>`__, use:: git clone https://github.com/gregparkes/BattleSimulator conda env create -f environment.yml conda activate bsm Now within the ``bsm`` environment run your Jupyter notebook:: jupyter notebook Running Tests ~~~~~~~~~~~~~ You will need the following for testing (soft requirement): - PyTest (5.1.2) Then perform the following within a console:: cd tests/ pytest -v How to use: The Basics ---------------------- Firstly, check the requirements for using this simulator, of which most come with the `Anaconda distribution <https://www.anaconda.com/>`__. In addition you will need the **ffmpeg** video conversion package to generate the simulations as animations. Secondly, you will need to import the package as: .. code-block:: python import battlesim as bsm We recommend using ``bsm`` as a shorthand to reduce the amount of writing out you have to do. If you're using Jupyter notebook we also recommend: .. code-block:: python import matplotlib.pyplot as plt plt.rcParams["animation.html"] = "html5" The second line is important when you come to plotting the animations, as there are a number of issues with using it. All of the heavy lifting comes in the ``bsm.Battle`` object that provides a neat interface for all of the operations you would like to conduct: .. code-block:: python bat = bsm.Battle("datasets/starwars-clonewars.csv") You can see that we have specified a 'dataset' from which all of the unit roster can be drawn from; for specifics of how this file should be oriented, see the documentation. We then need to specify units to create to form an army. For example, in this Star Wars example, we could specify a play-off between Clone troopers and B1 battledroids. This is achieved using a meta-information object called a ``Composite``, which holds a group of units of a given type: .. code-block:: python armies = [ bsm.Composite("B1 battledroid", 70), bsm.Composite("Clone Trooper", 50) ] bat.create_army(armies) which internally creates an efficient numpy matrix, ready to perform the simulation. This is stored in the ``battle.M_`` object, a heterogenous ``ndarray`` element. By default, each Composite spawns on top of each other using a gaussian distribution at (0, 0). When initialising the Composite we can specify a new sampling using the ``Sampling`` class or override directly: .. code-block:: python bat.composition_[1].pos = bsm.Sampling("normal", 10., 2.) And now to simulate (note that the first time this executes will be painfully slow as JIT compiles a lot of code): .. code-block:: python F = bat.simulate() By default, the simulation function will make a record of important parameters at each step and then return these parameters as a heterogenous ``ndarray`` at the end in *long form* (with a cached element called ``sim_``). In addition, because you want to see what's going on - we can animate the frames using this convenience method within the Battle object: .. code-block:: python bat.sim_jupyter() The result is as follows. .. image:: simulations/sim2.gif :alt: Image not Found :align: center Here ``sim_jupyter`` treats each unit object as a quiver arrow in 2-d space (position and direction facing it's enemy). The targets should move towards each other and attempt to kill each other. Dead units are represented as crosses **'x'** on the map. .. image:: images/quiver1.svg :alt: Image not found :align: center The rest is for you to explore, tweak and enjoy watching arrows move towards each other and kill each other. We have extensive `examples <https://github.com/gregparkes/BattleSimulator/tree/master/examples>`__ to look at within this repository. One step further: Repeated runs ------------------------------- If you're interested in seeing how each team fare over multiple runs (to eliminate random biases), then ``bsm.Battle`` objects once defined, contain a ``simulate_k()`` method, where ``k`` specifies the number of runs you wish to complete. Unlike ``simulate()`` by itself, it does not return a ``ndarray`` of frames, but rather the number of units from each team left standing at each iteration: .. code-block:: python runs = battle.simulate_k(k=40) This is the beginning of creating an interface similar to Machine Learning, whereby the outcome can be a classification (team) or regression (number of units surviving) target, and the unit compositions, aspects of the engine etc., can be inputs. New in v0.3.6 ------------- There are a number of exciting changes in this `current update <CHANGELOG.md>`__, including: - Introduction of **Terrains**. This is a major expansion giving 3D pseudodepth to animated battles. Depth now influences movement speed of units, with terrain penalties applied (up to 50%) on higher hills. They also increase range for units on hills and increase damage when firing downhill on an enemy unit. - Introduction of *armor*. Armor acts as another health buffer to protect units from harm. Teaching series --------------- As well as a fully-fledged package simulator, you can find `teaching material <https://github.com/gregparkes/BattleSimulator/tree/master/teaching>`__ in Jupyter notebook form within the ``teaching/`` subfolder, that takes users through the development process of this package, compares and contrasts Object-Oriented (OO) implementations to numpy-esque implementations, their performance, plotting, animations and more. We hope you find this material interesting and will aid as you use the package and possibly develop packages of your own in the future. Material covered so far: 1. Basics, including importing the dataset, the ``Unit`` class, basic simulation 2. Improving the ``Unit`` class and simulation early-stopping for performance. 3. Plotting simulations and performance-driven development This is still in active development retracing the steps of the project. All legacy functions associated with this can be found in the *battlesim/legacy.py* document. Future plans ------------ * Include AI-based behavior that makes use of height (to occupy hills) * Develop 'defensive' AI. Ensure that any use of this material is appropriately referenced and in compliance with the `license <LICENSE.txt>`__.


نیازمندی

مقدار نام
>=1.11.0 numpy
>=0.25.1 pandas
>=3.1.1 matplotlib
>=0.45 numba


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl battlesim-0.3.7:

    pip install battlesim-0.3.7.whl


نصب پکیج tar.gz battlesim-0.3.7:

    pip install battlesim-0.3.7.tar.gz