معرفی شرکت ها


batchx-dev-1.0.91


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

BatchX Python developer tools
ویژگی مقدار
سیستم عامل -
نام فایل batchx-dev-1.0.91
نام batchx-dev
نسخه کتابخانه 1.0.91
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Batchx
ایمیل نویسنده dev@batchx.com
آدرس صفحه اصلی https://github.com/batchx/python-toolbox
آدرس اینترنتی https://pypi.org/project/batchx-dev/
مجوز -
Welcome to _BatchX' python toolbox_, or _"the toolbox"_ for short. The toolbox makes the life of BatchX (python) developers **more pleasant**. To do so, it provides tools that help devs to work more effectively. # Table of Contents - [Installation](https://github.com/batchx/python-toolbox#installation) - [Local](https://github.com/batchx/python-toolbox#local) - [Inside Docker image](https://github.com/batchx/python-toolbox#inside-docker-image) - [The manifest as single source of truth](https://github.com/batchx/python-toolbox#the-manifest-as-single-source-of-truth) - [`bx-readme`](https://github.com/batchx/python-toolbox#bx-readme) - [CommandBuilder](https://github.com/batchx/python-toolbox#commandbuilder) - [Connecting CLI parameters to BatchX parameters](https://github.com/batchx/python-toolbox#connecting-tool-parameters-to-batchx-parameters) - [Understanding parameter types](https://github.com/batchx/python-toolbox#understanding-parameter-types) - [Add action](https://github.com/batchx/python-toolbox#add-actions) - [Specify constraints](https://github.com/batchx/python-toolbox#specify-constraints) # Installation The toolbox is available on [PyPi](https://pypi.org/project/batchx-dev/). ## Local Simple: do a `pip install` ```shell python -m pip install batchx-dev ``` For reproducibility, it often makes sense to 'lock' yourself into a specific version. This can be done as follows: ```shell python -m pip install batchx-dev==1.0.63 ``` ## Inside Docker image Installation of the toolbox inside the docker image of a BatchX tool is _almost_ identical to a local install, except for the fact that the `pip install` command now has to be part of the Dockerfile. For the sake of argument, we assume that you are working on bringing a bioinformatics tool called `biotool` into BatchX, and that your directory structure looks like this, ``` biotool ├── Dockerfile ├── run_biotool.py └── manifest ├── manifest.json ├── picture.png └── readme.md ``` Suppose that, initially, `biotool/Dockerfile` looked as follows; ```dockerfile FROM amd64/python:3.10.4-bullseye RUN python -m pip install biotool==2.4.2 RUN mkdir batchx RUN chmod -R 777 /batchx COPY run_biotool.py /batchx ENTRYPOINT python /batchx/run_biotool.py LABEL io.batchx.manifest=10 COPY manifest /batchx/manifest ``` installation of the toolbox inside the image requires the addition of a single line, ```dockerfile RUN python -m pip install batchx-dev==1.0.63 ``` which yields a `Dockerfile` that looks like this: ```dockerfile FROM amd64/python:3.10.4-bullseye RUN python -m pip install batchx-dev==1.0.63 RUN python -m pip install biotool==2.4.2 RUN mkdir batchx RUN chmod -R 777 /batchx COPY run_biotool.py /batchx ENTRYPOINT python /batchx/run_biotool.py LABEL io.batchx.manifest=10 COPY manifest /batchx/manifest ``` That's it. Note that, in a Dockerfile, **you really should 'pin' a specific version of the packages you install**. If you do not do so, the Docker image may differ depending on when it was last built. # The manifest as single source of truth Ultimately, the manifest is of utmost importance in BatchX. On an abstract level, much of what the toolbox achieves comes down to making your code understand the manifest properly. Therefore, much of the explanations below are example-driven, showcasing different scenarios in which a manifest needs proper interpretation. # `bx-readme` The toolbox comes with a **`bx-readme` command** that helps to keep the `manifest.json` and the `readme.md` in sync. We assume the following directory structure, ``` biotool ├── Dockerfile ├── run_biotool.py └── manifest ├── manifest.json ├── picture.png └── readme.md └── python-toolbox ├── manifest.json ├── ... ``` The manifest (i.e. `manifest/manifest.json`) is the [single source of truth](#the-manifest-as-single-source-of-truth), but the human-readable readme (i.e. `manifest/readme.md`) repeats a lot of that information. As a consequence, changes in the manifest need to be reflected in the readme and vice-versa. This synchronisation process is prone to human error, which is why the toolbox steps in. ## Quickstart Ensure that your terminal is in the `/manifest` directory (`cd manifest`), and do, ```shell bx-readme ``` This will likely do what you want. This command looks at `manifest.json` and `readme.md` and does its best to improve both. ### In-depth explanation Run ```shell bx-readme --help ``` for the latest information on the CLI. Additionally, it is interesting to know that the `bx-readme` command internally relies on two objects: - the `ManifestImprover` and - the `ReadmeImprover`. Those objects are responsible for exactly what their names suggest. The `bx-readme` command is nothing more than a single script that initializes those objects, configures them, runs them and saves the results. However, much more is possible beyond the "one size fits all approach" of that particular script. To get an idea of all the possibilities, the best reference is to study their respective integration tests. - [ManifestImprover integration test](test/mf-improver.ipynb) - [ReadmeImprover integration test](test/rm-improver.ipynb) - [ManifestImprover-ReadmeImprover end-to-end integration test](test/mfi-rmi-end-to-end.ipynb) # CommandBuilder Apart from `bx-readme`, this toolbox also comes in handy when incorporating a bioinformatics tool into [batchx.io](https://www.batchx.io/). In this section, we highlight some of its functionalities in that regard. ## Initialize the CommandBuilder The `CommandBuilder` relies on a few additional datastructures, namely `Manifest` and `Filesystem` objects. ```python from batchx_dev.toolbox import FileSystem, Manifest, CommandBuilder fs = FileSystem(tool="biotool") # data-structure (approximately a dict) capturing the internal directory structure of a tool's docker image. mf = Manifest(fs.mfp) # load manifest.json cb = CommandBuilder(mf, tool="biotool", filesystem=fs) # Initialize the CommandBuilder ``` ## Connecting CLI parameters to BatchX parameters Suppose the `biotool` CLI has an optional parameter `--maximum-length` ```shell biotool --input genome.fasta --maximum-length 1000 ``` which appears in the manifest as follows, ```json "maximumLength": { "type": "integer", "required": false, "default": 250, "description": "Maximum length (in bp) for which biotool makes sense." }, ``` Obviously, the `biotool` parameter (`--maximum-length`) has a different name than the BatchX parameter (`maximumLength`). But, in order to pass the user-provided value for this parameter from BatchX (CLI or web interface) into the underlying `biotool` CLI, this _obvious and trivial_ knowledge still needs to be represented _explicitly_ somewhere in the wrapper script `run_biotool.py`. This leads to code that looks like this, ```python maximum_length = parsed_json["maximumLength"] ... command = "biotool " if maximum_length is not None: command += "--maximum_length {}".format(maximum_length) ``` which is _not wrong_, but this is a lot of code _just_ to link `maximum_length` and `maximumLength` together. In particular, note that this - parses a json; - looks up the user-provided value of the parameter of interest (`maximumLength`); - creates a new python variable (`maximum_length`) to house that value; - checks if that variable has an _actual_ value (i.e. `is not None`); - if yes: - creates a substring `--maximum_length`; - injects the value of your python variable `maximum_length` into that string; - and finally, extends the command string with this substring. Whereas the only thing you _really had to do_ was to explain to your computer that `maximumLength` is a synonym for `--maximum_length` in this context. Here, however, linking `maximumLength` and `--maximum_length` gets intertwined with value-passing and actual command-generation. Mixing all of this is suboptimal, because value-passing and actual command-generation of the `biotool` CLI command is something that needs to happen anyway, for any parameter: that part is perfectly suitable for automation. The linking together is _the only thing_ that requires actual human intervention here. The toolbox allows you to do just that: ```python cb.add_command(cmd="maximum_length", key="maximumLength") ``` The commandbuilder now knows that `maximumLength` is a synonym for `maximum_length`, and upon command generation will do what it needs to do. ### Example: Tool parameters to BatchX parameters To illustrate, given this `input.json`, ```json "fasta": "some_genome.fasta", "maximumLength": 200 ``` this `run_biotool.py` implementation ```python from batchx_dev.toolbox import FileSystem, Manifest, CommandBuilder fs = FileSystem(tool="biotool") # data-structure (approximately a dict) capturing the internal directory structure of a tool's docker image. mf = Manifest(fs.mfp) # load manifest.json (mfp = manifest filepath) ip = Input(fs.ifp) # load input.json (ifp = input filepath) cb = CommandBuilder(mf, tool="biotool", filesystem=fs) # Initialize the CommandBuilder cb.add_command(cmd="input", key="fasta") cb.add_command(cmd="maximum_length", key="maximumLength") cb.build_command(ip) ``` yields the following command: ```shell biotool --input some_genome.fasta --maximum-length 200 ``` ## Understanding parameter types Suppose the `biotool` CLI has an optional _flag_ `--no-qc`, which allows users to run `biotool` without its built-in quality control mechanism, forcing it to produce more but potentially less relevant outputs. Since it is a _flag_, its mere presence indicates that this option is active. That is, this command ```shell biotool --input genome.fasta --maximum-length 1000 --no-qc ``` runs `biotool` with quality control _disabled_, whereas this command ```shell biotool --input genome.fasta --maximum-length 1000 ``` runs `biotool` with quality control _enabled_. Note the difference with "regular" command line _arguments_ (i.e. "key-value style"), such as `--input` and `--maximum-length` that have to be followed by an actual value; in flags, the value is implicit. In a BatchX manifest, this flag can be described as follows, ```json "noQC": { "type": "bool", "required": false, "default": false, "description": "Flag that indicates whether or not biotool's internal quality control mechanism should be bypassed." }, ``` Apart from linking the `biotool` parameter (`--no-qc`) and the BatchX parameter (`noQC`), developers now must also encode particular logic to inject this parameter's value into the final command, i.e.: - if `noQC==True`, the flag must be present, - if `noQC==False` nothing needs to be added. Obviously, this differs from how a command is built for regular (key-value style) arguments, which leads to code that looks like this, ```python maximum_length = parsed_json["maximumLength"] no_qc = parsed_json["noQC"] ... command = "biotool " if maximum_length is not None: command += "--maximum_length {}".format(maximum_length) if no_qc: command += "--no_qc" ``` again, nothing inherently wrong about this, but this intertwines proper understanding of the manifest and the parsing of the actual input. Another disadvantage is the fact that _readers_ of this code need to pay very close attention to figure out which parameters are _flags_ and which are _key-value_. The toolbox, on the other hand, simply allows you to _explicitly_ state that a particular parameter is a flag, ```python cb.add_command(cmd="maximum_length", key="maximumLength") cb.add_command(cmd="no-qc", key="noQC").set_kind(kind="flag") ``` The commandbuilder now knows that `noQC` is a flag (and so do readers of this code!), and takes this into account when generating commands. ### Example: Understanding parameter types To illustrate, given this `input.json`, ```json "fasta": "some_genome.fasta", "maximumLength": 200, "noQC": true ``` this `run_biotool.py` implementation ```python from batchx_dev.toolbox import FileSystem, Manifest, CommandBuilder fs = FileSystem(tool="biotool") # data-structure (approximately a dict) capturing the internal directory structure of a tool's docker image. ip = Input(fs.ifp) # load input.json mf = Manifest(fs.mfp) # load manifest.json cb = CommandBuilder(mf, tool="biotool", filesystem=fs) # Initialize the CommandBuilder cb.add_command(cmd="input", key="fasta") cb.add_command(cmd="maximum_length", key="maximumLength") cb.add_command(cmd="no-qc", key="noQC").set_kind(kind="flag") cb.build_command(ip) ``` yields the following command: ```shell biotool --input some_genome.fasta --maximum-length 200 --no-qc ``` whereas given this `input.json`, ```json "fasta": "some_genome.fasta", "maximumLength": 200, "noQC": false ``` it generates this command instead: ```shell biotool --input some_genome.fasta --maximum-length 200 ``` ## Add actions ### Example: Attaching an action to a parameter To illustrate, given this `input.json`, ```json "fasta": "some_genome.fasta.gz", "maximumLength": 2000, "noQC": true ``` this `run_biotool.py` implementation ```python from batchx_dev.toolbox import FileSystem, Manifest, CommandBuilder # define a useful function def conditional_unzip_gzip(input, manifest, fp): """ For constraints & actions: - First argument is always the Input object. - Second argument is always the Manifest object. - Third argument is always the value of the command with which the constraint is associated. """ def is_gz_file(fp: str | Path): with open(fp, "rb") as f: return f.read(2) == b"\x1f\x8b" def unzip_gzip(gzip_fp, unzip_fp=None): """Unzips a gzipped file with pgiz.""" gzip_fp = Path(gzip_fp) assert gzip_fp.suffix == ".gz", "Not the expected `.gz` extension!" if unzip_fp is None: unzip_fp = gzip_fp.parent / gzip_fp.stem # removes .gz suffix print("Extracting target file {} using pigz".format(gzip_fp), flush=True) with open(unzip_fp, "w") as f: pigz = subprocess.call(["pigz", "-dc", str(gzip_fp)], stdout=f) if pigz != 0: sys.exit(pigz) return unzip_fp fp = Path(fp) if fp.suffix == ".gz": if is_gz_file(fp): return unzip_gzip(fp) else: msg = """ Assumed that file {f} is gzipped. However, upon closer inspection (via `is_gz_file`), it turns out this is not the case. Please resolve this issue. """.format( f=str(fp) ) raise ValueError(msg) else: return fp fs = FileSystem(tool="biotool") # data-structure (approximately a dict) capturing the internal directory structure of a tool's docker image. ip = Input(fs.ifp) # load input.json mf = Manifest(fs.mfp) # load manifest.json cb = CommandBuilder(mf, tool="biotool", filesystem=fs) # Initialize the CommandBuilder cb.add_command(cmd="input", key="fasta").add_action(conditional_unzip_gzip) cb.add_command(cmd="maximum_length", key="maximumLength") cb.add_command(cmd="no-qc", key="noQC").set_kind(kind="flag") cb.build_command(ip) ``` yields the following command: ```shell biotool --input some_genome.fasta --maximum-length 2000 --no-qc ``` where `some_genome.fasta` exists (although the input was `some_genome.fasta.gz`!), because the action you attached to that parameter took care of that via running the function `conditional_gzip_unzip`. ## Specify constraints ### Example: Specify constraints To illustrate, given this `input.json`, ```json "fasta": "some_genome.fasta", "maximumLength": 2000, "noQC": true "callLargeVariants": true ``` this `run_biotool.py` implementation ```python from batchx_dev.toolbox import FileSystem, Manifest, CommandBuilder fs = FileSystem(tool="biotool") # data-structure (approximately a dict) capturing the internal directory structure of a tool's docker image. ip = Input(fs.ifp) # load input.json mf = Manifest(fs.mfp) # load manifest.json cb = CommandBuilder(mf, tool="biotool", filesystem=fs) # Initialize the CommandBuilder cb.add_command(cmd="input", key="fasta") cb.add_command(cmd="maximum_length", key="maximumLength") cb.add_command(cmd="no-qc", key="noQC").set_kind(kind="flag") def large_variants_constraint(input, manifest, value, k: str="maximumLength", threshold: int=200): """ For constraints & actions: - First argument is always the Input object. - Second argument is always the Manifest object. - Third argument is always the value of the command with which the constraint is associated. Other arguments have to be keyword arguments, and can be passed whilst adding the constraint to the CommandBuilder """ return ip.get(k) > threshold cb.add_command(cmd="large-variants", key="callLargeVariants") .set_kind(kind="flag") .add_constraint(large_variants_constraint, threshold=1000) cb.build_command(ip) ``` yields the following command: ```shell biotool --input some_genome.fasta --maximum-length 2000 --no-qc --large-variants ``` Whereas the same implementation, given this input, ```json "fasta": "some_genome.fasta", "maximumLength": 200, "noQC": true "callLargeVariants": true ``` would not produce any command at all and throw an error, due to the fact that `"maximumLength": 200` is incompatible with the `callLargeVariants` flag. Indeed, the `callLargeVariants` flag only makes sense if `maximumLength > 1000`. # Feature requests Please add it to this [project board](https://github.com/orgs/batchx/projects/7).


نیازمندی

مقدار نام
- batchx
- click
- jinja2
- mistletoe
- boto3


زبان مورد نیاز

مقدار نام
>=3.10 Python


نحوه نصب


نصب پکیج whl batchx-dev-1.0.91:

    pip install batchx-dev-1.0.91.whl


نصب پکیج tar.gz batchx-dev-1.0.91:

    pip install batchx-dev-1.0.91.tar.gz