معرفی شرکت ها


basic-image-eda-0.0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

image dataset eda tool to check basic information of images.
ویژگی مقدار
سیستم عامل -
نام فایل basic-image-eda-0.0.3
نام basic-image-eda
نسخه کتابخانه 0.0.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Seungjae Kim
ایمیل نویسنده sjn735@gmail.com
آدرس صفحه اصلی https://github.com/Soongja/basic-image-eda
آدرس اینترنتی https://pypi.org/project/basic-image-eda/
مجوز MIT
# basic-image-eda A simple multiprocessing EDA tool to check basic information of images under a directory(images are found recursively). This tool was made to quickly check info and prevent mistakes on reading, resizing, and normalizing images as inputs for neural networks. It can be used when first joining an image competition or training CNNs with images! *Notes:* \- All images are converted to 3-channel(rgb) images. When images that have various channels are mixed, some results can be misleading. \- uint8 and uint16 data types are supported. If different data types are mixed, error occurs. \- Supported extensions: jpg, jpeg, jpe, png, tif, tiff, bmp, ppm, pbm, pgm, sr, ras, webp ### Installation ```bash pip install basic-image-eda ``` or (latest version) ```bash pip install git+https://github.com/Soongja/basic-image-eda ``` prerequisites: - opencv-python - numpy - matplotlib - skimage.io - tifffile - tqdm ### Usage(CLI/Code) #### CLI simple one line command! ```bash basic-image-eda <data_dir> ``` or ```bash basic-image-eda <data_dir> -e png tiff -t 12 --dimension_plot --channel_hist --nonzero --hw_division_factor 2.0 > eda.txt Options: -e --extensions target image extensions. if none, all supported extensions are included.(default=None) -t --threads number of multiprocessing threads. if 0, automatically count max threads.(default=0) -d --dimension_plot show dimension(height/width) scatter plot.(default=False) -c --channel_hist show channelwise pixel value histogram. takes longer time.(default=False) -n --nonzero calculate values only from non-zero pixels of the images.(default=False) -f --hw_division_factor divide height,width of the images by this factor to make pixel value calculation faster. Information on height, width are not changed and will be printed correctly.(default=1.0) -V --version show version. ``` #### Code ```python from basic_image_eda import BasicImageEDA if __name__ == "__main__": # for multiprocessing data_dir = "./data" BasicImageEDA.explore(data_dir) # or extensions = ['png', 'jpg', 'jpeg'] threads = 0 dimension_plot = True channel_hist = True nonzero = False hw_division_factor = 1.0 BasicImageEDA.explore(data_dir, extensions, threads, dimension_plot, channel_hist, nonzero, hw_division_factor) ``` ### Results #### Results on [celeba dataset](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) (test set) <table border="0"> <tr> <td> <img src="https://user-images.githubusercontent.com/32871371/81141998-43ebe700-8fa9-11ea-9645-fff2cc83ab9b.png" width="100%"> </td> <td> <img src="https://user-images.githubusercontent.com/32871371/81142025-5fef8880-8fa9-11ea-98eb-2c43b256fa8d.png", width="100%"> </td> </tr> </table> ``` found 19962 images. Using 12 threads. (max:12) *--------------------------------------------------------------------------------------* number of images | 19962 dtype | uint8 channels | [3] extensions | ['jpg'] min height | 85 max height | 5616 mean height | 591.8215108706543 median height | 500 min width | 85 max width | 5616 mean width | 490.2976655645727 median width | 396 mean height/width ratio | 1.207065732587525 median height/width ratio | 1.2626262626262625 recommended input size(by mean) | [592 488] (h x w, multiples of 8) recommended input size(by mean) | [592 496] (h x w, multiples of 16) recommended input size(by mean) | [576 480] (h x w, multiples of 32) channel mean(0~1) | [0.4954518 0.42574266 0.39330518] channel std(0~1) | [0.3216056 0.3023355 0.3018837] *--------------------------------------------------------------------------------------* ``` download site: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html paper: S. Yang, P. Luo, C. C. Loy, and X. Tang, "From Facial Parts Responses to Face Detection: A Deep Learning Approach", in IEEE International Conference on Computer Vision (ICCV), 2015 #### Results on [NIH Chest X-ray dataset](https://cloud.google.com/healthcare/docs/resources/public-datasets/nih-chest?hl=ko) (images_001.tar.gz) <table border="0"> <tr> <td> <img src="https://user-images.githubusercontent.com/32871371/81142053-6f6ed180-8fa9-11ea-95d4-01412e22d4d5.png" width="100%"> </td> <td> <img src="https://user-images.githubusercontent.com/32871371/81142064-7a296680-8fa9-11ea-9940-eb2dc2edcd79.png", width="100%"> </td> </tr> </table> ``` found 4999 images. Using 12 threads. (max:12) *--------------------------------------------------------------------------------------* number of images | 4999 dtype | uint8 channels | [1, 4] extensions | ['png'] min height | 1024 max height | 1024 mean height | 1024.0 median height | 1024 min width | 1024 max width | 1024 mean width | 1024.0 median width | 1024 mean height/width ratio | 1.0 median height/width ratio | 1.0 recommended input size(by mean) | [1024 1024] (h x w, multiples of 8) recommended input size(by mean) | [1024 1024] (h x w, multiples of 16) recommended input size(by mean) | [1024 1024] (h x w, multiples of 32) channel mean(0~1) | [0.5172472 0.5172472 0.5172472] channel std(0~1) | [0.25274998 0.25274998 0.25274998] *--------------------------------------------------------------------------------------* ``` data provider: NIH Clinical Center download site: https://nihcc.app.box.com/v/ChestXray-NIHCC paper: Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, Ronald Summers, ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases, IEEE CVPR, pp. 3462-3471, 2017 ### License [MIT License](https://github.com/Soongja/basic-image-eda/blob/master/LICENSE)


نحوه نصب


نصب پکیج whl basic-image-eda-0.0.3:

    pip install basic-image-eda-0.0.3.whl


نصب پکیج tar.gz basic-image-eda-0.0.3:

    pip install basic-image-eda-0.0.3.tar.gz