معرفی شرکت ها


basic-functions-0.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

very basic functions for data pre-processing and visualization
ویژگی مقدار
سیستم عامل -
نام فایل basic-functions-0.0.4
نام basic-functions
نسخه کتابخانه 0.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Noga Mudrik
ایمیل نویسنده <nmudrik1@jhmi.edu>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/basic-functions/
مجوز -
Help on module basic_functions: **FUNCTIONS** add_arrow(ax, start, end, arrowprops={'facecolor': 'black', 'width': 1.8, 'alpha': 0.5}) Add an arrow to the `ax` axis. Parameters ---------- ax : matplotlib.axes._subplots.AxesSubplot The axis to add the arrow to. start : tuple of floats The starting coordinates of the arrow in (x, y) format. end : tuple of floats The ending coordinates of the arrow in (x, y) format. arrowprops : dict, optional A dictionary of properties for the arrow, by default {'facecolor': 'black', 'width': 1.8, 'alpha': 0.5}. Returns ------- None ------------------------------------------------------------------------------------------ add_dummy_sub_legend(ax, colors, lenf, label_base='f') Add a sub-legend to the plot for the specified colors. Parameters: - ax (matplotlib.axes.Axes): The matplotlib axes to add the sub-legend to. - colors (list): A list of colors to add to the sub-legend. - lenf (int): The number of colors to include in the sub-legend. - label_base (str): The base string for the label of each color. (default: 'f') Returns: None ------------------------------------------------------------------------------------------ add_labels(ax, xlabel='X', ylabel='Y', zlabel='', title='', xlim=None, ylim=None, zlim=None, xticklabels=array([None], dtype=object), yticklabels=array([None], dtype=object), xticks=[], yticks=[], legend=[], ylabel_params={}, zlabel_params={}, xlabel_params={}, title_params={}) Add labels, titles, limits, etc. to a figure. Parameters: ax (subplot): The subplot to be edited. xlabel (str, optional): The label for the x-axis. Defaults to 'X'. ylabel (str, optional): The label for the y-axis. Defaults to 'Y'. zlabel (str, optional): The label for the z-axis. Defaults to ''. title (str, optional): The title for the plot. Defaults to ''. xlim (list or tuple, optional): The limits for the x-axis. Defaults to None. ylim (list or tuple, optional): The limits for the y-axis. Defaults to None. zlim (list or tuple, optional): The limits for the z-axis. Defaults to None. xticklabels (array, optional): The labels for the x-axis tick marks. Defaults to np.array([None]). yticklabels (array, optional): The labels for the y-axis tick marks. Defaults to np.array([None]). xticks (list, optional): The positions for the x-axis tick marks. Defaults to []. yticks (list, optional): The positions for the y-axis tick marks. Defaults to []. legend (list, optional): The legend for the plot. Defaults to []. ylabel_params (dict, optional): Additional parameters for the y-axis label. Defaults to {}. zlabel_params (dict, optional): Additional parameters for the z-axis label. Defaults to {}. xlabel_params (dict, optional): Additional parameters for the x-axis label. Defaults to {}. title_params (dict, optional): Additional parameters for the title. Defaults to {}. ------------------------------------------------------------------------------------------ cal_next_FHN(v, w, dt=0.01, max_t=300, I_ext=0.5, b=0.7, a=0.8, tau=20) Calculate next v and w values for FitzHugh-Nagumo dynamics Inputs: v: current v value w: current w value dt: time step max_t: maximum time I_ext: external current b: model parameter a: model parameter tau: model parameter Returns: v_next: next v value w_next: next w value ------------------------------------------------------------------------------------------ checkEmptyList(obj) Parameters ---------- obj : any type Returns ------- Boolean variable (whether obj is a list) ------------------------------------------------------------------------------------------ check_save_name(save_name, invalid_signs='!@#$%^&*.,:;', addi_path=[], sep='\\') Check if the given file name is valid and returns the final file name. The function replaces invalid characters in the file name with underscores ('_'). Parameters: save_name (str): The name of the file to be saved. invalid_signs (str, optional): A string of invalid characters. Defaults to '!@#$%^&*.,:;'. addi_path (list, optional): A list of additional paths to be appended to the file name. Defaults to []. sep (str, optional): The separator used between different elements of the path. Defaults to the system separator. Returns: str: The final file name with invalid characters replaced and with additional path appended if provided. ------------------------------------------------------------------------------------------ claculate_percent_close(reco, real, epsilon_close=0.1, return_quantiles=False, quantiles=[0.05, 0.95]) Calculate the ratio of close (within a specific distance) points among all dynamics' points. Parameters: ----------- reco: k x T numpy array The reconstructed dynamics matrix. real: k x T numpy array The real dynamics matrix (ground truth). epsilon_close: float, optional (default: 0.1) The threshold for distance. return_quantiles: bool, optional (default: False) Whether to return confidence interval values. quantiles: list of float, optional (default: [0.05, 0.95]) The lower and higher limits for the quantiles. Returns: -------- mean_close: float The mean of the close enough points. q1: float The first quantile (only returned if `return_quantiles` is True). q2: float The second quantile (only returned if `return_quantiles` is True). ------------------------------------------------------------------------------------------ create_FHN(dt=0.01, max_t=100, I_ext=0.5, b=0.7, a=0.8, tau=20, v0=-0.5, w0=0, params={'exp_power': 0.9, 'change_speed': False}) Create the FitzHugh-Nagumo dynamics Inputs: dt: time step max_t: maximum time I_ext: external current b: model parameter a: model parameter tau: model parameter v0: initial condition for v w0: initial condition for w params: dictionary of additional parameters exp_power: power to raise time to for non-uniform time change_speed: Boolean to determine whether to change time speed Returns: v_full: list of v values at each time step w_full: list of w values at each time step ------------------------------------------------------------------------------------------ create_ax(ax, nums=(1, 1), size=(10, 10), proj='d2', return_fig=False, sharey=False, sharex=False, fig=[]) Create axes in the figure for plotting. Parameters: ax (list or Axes): List of Axes objects or a single Axes object nums (tuple): Number of rows and columns for the subplots (default (1,1)) size (tuple): Size of the figure (default (10,10)) proj (str): Projection type ('d2' for 2D or 'd3' for 3D) (default 'd2') return_fig (bool): Return the figure object in addition to the Axes object (default False) sharey (bool): Share y axis between subplots (default False) sharex (bool): Share x axis between subplots (default False) fig (Figure): Figure object Returns: Axes or tuple: The Axes object(s) for plotting create_colors(len_colors, perm=[0, 1, 2]) Create a set of discrete colors with a one-directional order Input: len_colors = number of different colors needed Output: 3 X len_colors matrix decpiting the colors in the cols ------------------------------------------------------------------------------------------ create_dynamics(type_dyn='cyl', max_time=1000, dt=0.01, change_speed=False, t_speed=<ufunc 'exp'>, axis_speed=[], t_speed_params={}, to_cent=False, return_3d=False, return_additional=False, params_ex={}) Create ground truth dynamics dyn_type options: cyl f_spiral df_spiral ------------------------------------------------------------------------------------------ create_lorenz_mat(t=[], initial_conds=(0.0, 1.0, 1.05), txy=[]) Create the lorenz dynamics ------------------------------------------------------------------------------------------ create_orth_F(num_subdyns, num_neurons, evals=[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], seed_f=0, dist_type='random') Create orthogonal matrices. Parameters: num_subdyns (int): Number of sub-dynamics num_neurons (int): Number of neurons evals (list): List of eigenvalues. seed_f (int): Seed for the random number generator (default 0) dist_type (str): Distribution type ('random') Returns: list: List of orthogonal matrices ------------------------------------------------------------------------------------------ create_rotation_mat(theta=0, axes='x', dims=3) Create a rotation matrix based on the given parameters. Parameters: theta (float, optional): Angle in radians for rotation. Default is 0. axes (str, optional): Axis for rotation. Must be one of 'x', 'y' or 'z'. Default is 'x'. dims (int, optional): Dimension of the rotation. Must be either 2 or 3. Default is 3. Returns: numpy.ndarray: Rotation matrix of shape (dims, dims). Raises: ValueError: If dims is not 2 or 3. ------------------------------------------------------------------------------------------ find_closest(vec1, vec2, metric='mse') Find the closest elements in vec2 for each element in vec1. Parameters: vec1 (ndarray): 1-D numpy array vec2 (ndarray): 1-D numpy array metric (str): Metric to use for comparison, 'mse' by default Returns: tuple: - ndarray: closest elements in vec2 for each element in vec1 - ndarray: indices of closest elements in vec2 for each element in vec1 Example: find_closest([1, 2, 3], [0, 4, 5]) -> ([0, 4, 5], [0, 1, 2]) ------------------------------------------------------------------------------------------ find_dominant_row(coefficients) This function returns the row index of the largest absolute value of each column in the input 2D numpy array "coefficients". Inputs: coefficients - a 2D numpy array of shape (m, n) where m is the number of rows and n is the number of columns. Outputs: domi - a 1D numpy array of shape (n,) where each element is an integer representing the row index of the largest absolute value of each column. ------------------------------------------------------------------------------------------ find_perpendicular(d1, d2, perp_length=1, prev_v=[], next_v=[], ref_point=[], choose_meth='intersection', initial_point='mid', direction_initial='low', return_unchose=False, layer_num=0) IT IS AN INTER FUNCTION - DO NOT USE IT BY ITSELF This function find the 2 point of the orthogonal vector to a vector defined by points d1,d2 d1 = first data point d2 = second data point perp_length = desired width prev_v = previous value of v. Needed only if choose_meth == 'prev' next_v = next value of v. Needed only if choose_meth == 'prev' ref_point = reference point for the 'smooth' case, or for 2nd+ layers choose_meth = 'intersection' (eliminate intersections) OR 'smooth' (smoothing with previous prediction) OR 'prev' (eliminate convexity) direction_initial = to which direction take the first perp point return_unchose = whether to return unchosen directions ------------------------------------------------------------------------------------------ flip_power(x1, x2) This function takes two arguments, x1 and x2, and returns the result of x2 raised to the power of x1 using the numpy.power function. ------------------------------------------------------------------------------------------ init_mat(size_mat, r_seed=0, dist_type='norm', init_params={'loc': 0, 'scale': 1}, normalize=False) This is an initialization function to initialize matrices. Inputs: size_mat = 2-element tuple or list, describing the shape of the mat r_seed = random seed (should be integer) dist_type = distribution type for initialization; can be 'norm' (normal dist), 'uni' (uniform dist),'inti', 'sparse', 'regional', 'zeros' init_params = a dictionary with params for initialization. The keys depends on 'dist_type'. keys for norm -> ['loc','scale'] keys for inti and uni -> ['low','high'] keys for sparse -> ['k'] -> number of non-zeros in each row keys for regional -> ['k'] -> repeats of the sub-dynamics allocations normalize = whether to normalize the matrix Output: the random matrix with size 'size_mat' ------------------------------------------------------------------------------------------ lists2list(xss) Flatten a list of lists into a single list. Parameters ---------- xss : list of lists The list of lists to be flattened. Returns ------- list The flattened list. ------------------------------------------------------------------------------------------ load_mat_file(mat_name, mat_path='', sep='\\') Load a MATLAB `.mat` file. Useful for uploading the C. elegans data. Parameters: ----------- mat_name: str The name of the MATLAB file. mat_path: str, optional (default: '') The path to the MATLAB file. sep: str, optional (default: the system separator) The separator to use in the file path. Returns: -------- data_dict: dict A dictionary containing the contents of the MATLAB file. ------------------------------------------------------------------------------------------ load_pickle(path) Load a pickled object from disk. Parameters: path (str): The path to the pickled object. Returns: dct (obj): The loaded object. ------------------------------------------------------------------------------------------ load_vars(folders_names, save_name, sep='\\', ending='.pkl', full_name=False) Load results previously saved. Parameters: folders_names (str/list): List of folders to form the path or a string representation of the path save_name (str): Name of the saved file sep (str): Separator to join the folders ending (str): File extension of the saved file full_name (bool): If True, folders_names and sep are ignored Example: load_vars('' , 'save_c.pkl' ,sep=sep , ending = '.pkl',full_name = False) ------------------------------------------------------------------------------------------ lorenz(x, y, z, s=10, r=25, b=2.667) Given: x, y, z: a point of interest in three dimensional space s, r, b: parameters defining the lorenz attractor Returns: x_dot, y_dot, z_dot: values of the lorenz attractor's partial derivatives at the point x, y, z ------------------------------------------------------------------------------------------ mean_change(signal, axis=0) Calculate the mean change of the signal along the specified axis. Parameters ---------- signal : numpy.ndarray The signal data. axis : int, optional The axis along which the mean change is calculated, by default 0. Returns ------- numpy.ndarray The mean change of the signal. ------------------------------------------------------------------------------------------ min_dist(dotA1, dotA2, dotB1, dotB2, num_sects=500) Calculates the minimum euclidean distance between two discrete lines (e.g. where they intersect?). Inputs: dotA1: Tuple of x,y coordinate of first point on line A dotA2: Tuple of x,y coordinate of second point on line A dotB1: Tuple of x,y coordinate of first point on line B dotB2: Tuple of x,y coordinate of second point on line B num_sects: Number of sections the lines should be divided into to calculate distance Returns: List of minimum distances between two lines. ------------------------------------------------------------------------------------------ movmfunc(func, mat, window=3, direction=0, dist='uni') moving window with applying the function func on the matrix 'mat' towrads the direction 'direction' dist: can be 'uni' (uniform) or 'gaus' (Gaussian) Calculates the moving window with the application of the given function `func` on the matrix `mat` in the direction `direction`. Parameters: - func (callable): The function to apply. - mat (numpy.ndarray): The matrix to apply the function to. - window (int): The size of the moving window. (default: 3) - direction (int): The direction to apply the moving window. 0 for row-wise and 1 for column-wise. (default: 0) - dist (str): The distribution to use for weighting. Can be 'uni' for uniform or 'gaus' for Gaussian. (default: 'uni') Returns: numpy.ndarray: The result of applying the moving window to `mat`. Example: >>> import numpy as np >>> def myfunc(arr, axis=None): ... return np.sum(arr, axis=axis) >>> mat = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) >>> movmfunc(myfunc, mat, window=3, direction=0, dist='uni') array([[ 6., 9., 12.], [15., 18., 21.], [ 9., 12., 15.]]) ------------------------------------------------------------------------------------------ norm_coeffs(coefficients, type_norm, same_width=True, width_des=0.7, factor_power=0.9, min_width=0.01) Normalize the coefficients according to the specified type of normalization. Parameters ---------- coefficients : numpy.ndarray The coefficients to be normalized. type_norm : str The type of normalization to be applied. Can be 'sum_abs', 'norm', 'abs' or 'no_norm'. same_width : bool, optional Whether to enforce the same width for all coefficients, by default True. width_des : float, optional The desired width, by default 0.7. factor_power : float, optional The power factor to apply, by default 0.9. min_width : float, optional The minimum width allowed, by default 0.01. Returns ------- numpy.ndarray The normalized coefficients. Raises ------ NameError If the `type_norm` value is not one of the allowed values ('sum_abs', 'norm', 'abs' or 'no_norm'). ------------------------------------------------------------------------------------------ norm_mat(mat, type_norm='evals', to_norm=True) This function comes to norm matrices by the highest eigen-value Inputs: mat = the matrix to norm type_norm = what type of normalization to apply. Can be 'evals' (divide by max eval), 'max' (divide by max value), 'exp' (matrix exponential) to_norm = whether to norm or not to. Output: the normalized matrix ------------------------------------------------------------------------------------------ norm_over_time(coefficients, type_norm='normal') Normalize coefficients over time Inputs: coefficients: array of coefficients type_norm: type of normalization 'normal': standard normalization Returns: coefficients_norm: normalized coefficients ------------------------------------------------------------------------------------------ nullify_part(f, axis='both', percent0=80) Nullify a part of a matrix. Parameters: f (numpy array): The input matrix axis (str or int): The axis along which to perform the operation ('0', '1', or 'both') (default 'both') percent0 (int): The percentile value used to determine which values to nullify (default 80) Returns: numpy array: The input matrix with the specified values set to 0 ------------------------------------------------------------------------------------------ plot_3d_color_scatter(latent_dyn, coefficients, ax=[], figsize=(15, 10), delta=0.4, colors=[]) Plot a 3D color scatter plot. Parameters ---------- latent_dyn : numpy.ndarray A 3xN numpy array representing the latent dynamics. coefficients : numpy.ndarray A KxN numpy array representing the coefficients. ax : matplotlib.axes._subplots.AxesSubplot, optional A 3D axis to plot on, by default [] figsize : tuple, optional The size of the figure, by default (15, 10) delta : float, optional The delta between each row, by default 0.4 colors : list of str, optional The colors for each row, by default [] Returns ------- None ------------------------------------------------------------------------------------------ plot_multi_colors(store_dict, min_time_plot=0, max_time_plot=-100, colors=['green', 'red', 'blue'], ax=[], fig=[], alpha=0.99, smooth_window=3, factor_power=0.9, coefficients_n=[], to_scatter=False, to_scatter_only_one=False, choose_meth='intersection', title='') store_dict is a dictionary with the high estimation results. example: store_dict , coefficients_n = calculate_high_for_all(coefficients,choose_meth = 'intersection',width_des = width_des, latent_dyn = latent_dyn, direction_initial = direction_initial,factor_power = factor_power, return_unchose=True) ------------------------------------------------------------------------------------------ quiver_plot(sub_dyn=[], xmin=-5, xmax=5, ymin=-5, ymax=5, ax=[], chosen_color='red', alpha=0.4, w=0.02, type_plot='quiver', zmin=-5, zmax=5, cons_color=False, return_artist=False, xlabel='x', ylabel='y', quiver_3d=False, inter=2, projection=[0, 1]) Plots a quiver or stream plot on the specified axis. Parameters ---------- sub_dyn: numpy.ndarray, default: [] The matrix whose eigenvectors need to be plotted. If an empty list is provided, the default sub_dyn will be set to [[0,-1],[1,0]] xmin: float, default: -5 The minimum value for x-axis. xmax: float, default: 5 The maximum value for x-axis. ymin: float, default: -5 The minimum value for y-axis. ymax: float, default: 5 The maximum value for y-axis. ax: matplotlib.axes._subplots.AxesSubplot or list, default: [] The axis on which the quiver or stream plot will be plotted. If a list is provided, a new figure will be created. chosen_color: str or list, default: 'red' The color of the quiver or stream plot. alpha: float, default: 0.4 The alpha/transparency value of the quiver or stream plot. w: float, default: 0.02 The width of the arrows in quiver plot. type_plot: str, default: 'quiver' The type of plot. Can either be 'quiver' or 'streamplot'. zmin: float, default: -5 The minimum value for z-axis (for 3D plots). zmax: float, default: 5 The maximum value for z-axis (for 3D plots). cons_color: bool, default: False If True, a constant color will be used for the stream plot. If False, the color will be proportional to the magnitude of the matrix. return_artist: bool, default: False If True, the artist instance is returned. xlabel: str, default: 'x' Label for x-axis. ylabel: str, default: 'y' Label for y-axis. quiver_3d: bool, default: False If True, a 3D quiver plot will be generated. inter: float, default: 2 The step size for the grids in 3D plots. projection: list, default: [0,1] The indices of the columns in sub_dyn that will be used for plotting. Returns ------- h: matplotlib.quiver.Quiver or matplotlib.streamplot.Streamplot The artist instance, if return_artist is True. ------------------------------------------------------------------------------------------ red_mean(mat, axis=1) Subtract the mean of each row or column in a matrix. Parameters: mat (np.ndarray): The input matrix. axis (int, optional): The axis along which the mean should be computed. Default is 1 (mean of each row). Returns: np.ndarray: The matrix with each row or column mean subtracted. ------------------------------------------------------------------------------------------ relative_eror(reco, real, return_mean=True, func=<function nanmean at 0x000001AADA09DA20>) Calculate the relative reconstruction error Inputs: reco: k X T reconstructed dynamics matrix real: k X T real dynamics matrix (ground truth) return_mean: reaturn the average of the reconstruction error over time func: the function to apply on the relative error of each point Output: the relative error (or the mean relative error over time if return_mean) ------------------------------------------------------------------------------------------ remove_background(ax, grid=False, axis_off=True) Remove the background of a figure. Parameters: ax (subplot): The subplot to be edited. grid (bool, optional): Whether to display grid lines. Defaults to False. axis_off (bool, optional): Whether to display axis lines. Defaults to True. ------------------------------------------------------------------------------------------ remove_edges(ax, include_ticks=False, top=False, right=False, bottom=False, left=False) Remove the specified edges (spines) of the plot and optionally the ticks of the plot. Parameters ---------- ax : matplotlib.axes.Axes The matplotlib axes object of the plot. include_ticks : bool, optional Whether to include the ticks, by default False. top : bool, optional Whether to remove the top edge, by default False. right : bool, optional Whether to remove the right edge, by default False. bottom : bool, optional Whether to remove the bottom edge, by default False. left : bool, optional Whether to remove the left edge, by default False. Returns ------- None ------------------------------------------------------------------------------------------ rgb_to_hex(rgb_vec) Convert a RGB vector to a hexadecimal color code. Parameters: rgb_vec (list): A 3-element list of floats representing the red, green, and blue components of the color. The values should be between 0 and 1. Returns: str: The hexadecimal color code as a string. Example: >>> rgb_to_hex([0.5, 0.2, 0.8]) '#8033CC' ------------------------------------------------------------------------------------------ saveLoad(opt, filename) Save or load a global variable 'calc' Parameters ---------- opt : str the option, either "save" or "load" filename : str the name of the file to save or load from Returns ------- None ------------------------------------------------------------------------------------------ save_file_dynamics(save_name, folders_names, to_save=[], invalid_signs='!@#$%^&*.,:;', sep='\\', type_save='.npy') Save dynamics & model results to disk. Parameters: save_name (str): The name of the file to save. folders_names (List[str]): List of folder names where the file should be saved. to_save (List, optional): List of values to save. Defaults to []. invalid_signs (str, optional): String of invalid characters to be removed from the save name. Defaults to '!@#$%^&*.,:;'. sep (str, optional): Separator to use when joining `folders_names`. Defaults to `os.sep`. type_save (str, optional): The file format to save the data in. Valid options are '.npy' and '.pkl'. Defaults to '.npy'. Returns: None ------------------------------------------------------------------------------------------ sigmoid(x, std=1) This function computes the sigmoid function of a given input x, with a standard deviation "std". Parameters ---------- x : np.array / list std : The default is 1. Returns ------- np.array The sigmoid function maps any input value to the range of 0 and 1, making it useful for binary classification problems and as an activation function in neural networks. ------------------------------------------------------------------------------------------ spec_corr(v1, v2, to_abs=True) Compute the absolute value of the correlation between two arrays. Parameters: - v1 (numpy.ndarray): The first array to compute the correlation between. - v2 (numpy.ndarray): The second array to compute the correlation between. - to_abs (bool): Whether to compute the absolute value of the correlation (default: True). Returns: - float: The absolute value of the correlation between `v1` and `v2`. ------------------------------------------------------------------------------------------ str2bool(str_to_change) Transform a string representation of a boolean value to a boolean variable. Parameters: str_to_change (str): String representation of a boolean value Returns: bool: Boolean representation of the input string Example: str2bool('true') -> True ------------------------------------------------------------------------------------------ visualize_dyn(dyn, ax=[], params_plot={}, turn_off_back=False, marker_size=10, include_line=False, color_sig=[], cmap='cool', return_fig=False, color_by_dominant=False, coefficients=[], figsize=(5, 5), colorbar=False, colors=[], vmin=None, vmax=None, color_mix=False, alpha=0.4, colors_dyns=array(['r', 'g', 'b', 'yellow'], dtype='<U6'), add_text='t ', text_points=[], fontsize_times=18, marker='o', delta_text=0.5, color_for_0=None, legend=[], fig=[], return_mappable=False, remove_back=True, edgecolors='none') Plot the multi-dimensional dynamics Inputs: dyn = dynamics to plot. Should be a np.array with size k X T ax = the subplot to plot in (optional) params_plot = additional parameters for the plotting (optional). Can include plotting-related keys like xlabel, ylabel, title, etc. turn_off_back= disable backgroud of the plot? (optional). Boolean marker_size = marker size of the plot (optional). Integer include_line = add a curve to the plot (in addition to the scatter plot). Boolean color_sig = the color signal. if empty and color_by_dominant - color by the dominant dynamics. If empty and not color_by_dominant - color by time. cmap = cmap colors = if not empty -> pre-defined colors for the different sub-dynamics. Otherwise - colors are according to the cmap. color_mix = relevant only if color_by_dominant. In this case the colors need to be in the form of [r,g,b] Output: (only if return_fig) -> returns the figure


نیازمندی

مقدار نام
- numpy
- matplotlib
- scipy
- pandas
- webcolors
- qpsolvers
- seaborn
- colormap
- sklearn
- dill
- mat73
- easydev


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl basic-functions-0.0.4:

    pip install basic-functions-0.0.4.whl


نصب پکیج tar.gz basic-functions-0.0.4:

    pip install basic-functions-0.0.4.tar.gz