معرفی شرکت ها


bark-simulator-1.4.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A tool for Behavior benchmARKing
ویژگی مقدار
سیستم عامل -
نام فایل bark-simulator-1.4.9
نام bark-simulator
نسخه کتابخانه 1.4.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Julian Bernhard, Klemens Esterle, Patrick Hart, Tobias Kessler
ایمیل نویسنده autonomous-driving@fortiss.org
آدرس صفحه اصلی https://github.com/bark-simulator/bark
آدرس اینترنتی https://pypi.org/project/bark-simulator/
مجوز MIT
<p align="center"> <img src="https://github.com/bark-simulator/bark/raw/master/docs/source/bark_logo.jpg" alt="BARK" /> </p> ![Ubtuntu-CI Build](https://github.com/bark-simulator/bark/workflows/CI/badge.svg) ![Ubtuntu-ManyLinux Build](https://github.com/bark-simulator/bark/workflows/ManyLinux/badge.svg) ![NIGHTLY LTL Build](https://github.com/bark-simulator/bark/workflows/NIGHTLY_LTL/badge.svg) ![CI RSS Build](https://github.com/bark-simulator/bark/workflows/CI_RSS/badge.svg) ![NIGHTLY Rules MCTS Build](https://github.com/bark-simulator/bark/workflows/NIGHTLY_RULES_MCTS/badge.svg) [![Codacy Badge](https://app.codacy.com/project/badge/Grade/b9f484c42194487e9b9b33742381e992)](https://www.codacy.com/gh/bark-simulator/bark/dashboard?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=bark-simulator/bark&amp;utm_campaign=Badge_Grade) # BARK - A Tool for **B**ehavior benchm**ARK**ing BARK is a semantic simulation framework for autonomous driving. Its behavior model-centric design allows for the rapid development, training, and benchmarking of various decision-making algorithms. It is especially suited for computationally expensive tasks, such as reinforcement learning. A a good starting point, have a look at the content of our [BARK-Tutorial on IROS 2020](https://bark-simulator.github.io/tutorials/). ## Usage ### (A) Pip Package *For whom it is: Python evangelists implementing python behavior models or ML scientists using BARK-ML for learning behaviors.* Bark is available as [PIP-Package](https://pypi.org/project/bark-simulator/) for Ubuntu and MacOS for Python>=3.7. You can install the latest version with `pip install bark-simulator`. The Pip package supports full benchmarking functionality of existing behavior models and development of your models within python. After installing the package, you can have a look at the [examples](https://github.com/bark-simulator/bark/tree/master/bark/examples) to check how to use BARK. | Highway Example | Merging Example | Intersection Example | | --- | --- | --- | | ![Intersection](https://github.com/bark-simulator/bark/raw/master/docs/source/gifs/bark_highway.gif) | ![Intersection](https://github.com/bark-simulator/bark/raw/master/docs/source/gifs/bark_merging.gif) | ![Intersection](https://github.com/bark-simulator/bark/raw/master/docs/source/gifs/bark_intersection.gif) | ### (B) Build it from Source *For whom it is: C++ developers creating C++ behavior models, researchers performing benchmarks, or contributors to BARK.* Use `git clone https://github.com/bark-simulator/bark.git` or download the repository from this page. Then follow the instructions at [How to Install BARK](https://github.com/bark-simulator/bark/blob/master/docs/source/installation.md). To get step-by-step instructions on how to use BARK, you can run our [IPython Notebook tutorials](https://github.com/bark-simulator/bark/tree/master/docs/tutorials) using `bazel run //docs/tutorials:run`. For a more detailed understanding of how BARK works, its concept and use cases have a look at our [documentation](https://bark-simulator.readthedocs.io/en/latest/about.html). [Example Benchmark](https://github.com/bark-simulator/example_benchmark) is a running example of how to use BARK for benchmarking for scientific purposes. ## Scientific Publications using BARK * [BARK: Open Behavior Benchmarking in Multi-Agent Environments](https://arxiv.org/abs/2003.02604) (IROS 2020) * [Graph Neural Networks and Reinforcement Learning for Behavior Generation in Semantic Environments](https://arxiv.org/abs/2006.12576) (IV 2020) * [Counterfactual Policy Evaluation for Decision-Making in Autonomous Driving](https://arxiv.org/abs/2003.11919) (IROS 2020, PLC Workshop) * [Modeling and Testing Multi-Agent Traffic Rules within Interactive Behavior Planning](https://arxiv.org/abs/2009.14186) (IROS 2020, PLC Workshop) * [Formalizing Traffic Rules for Machine Interpretability](https://arxiv.org/abs/2007.00330) (CAVS 2020) * [Robust Stochastic Bayesian Games for Behavior Space Coverage](https://arxiv.org/abs/2003.11281) (RSS 2020, Workshop on Interaction and Decision-Making in Autonomous-Driving) * [Risk-Constrained Interactive Safety under Behavior Uncertainty for Autonomous Driving](https://arxiv.org/abs/2102.03053) (IV 2021) * [Risk-Based Safety Envelopes for Autonomous Vehicles Under Perception Uncertainty](https://arxiv.org/abs/2107.09918) (Arxiv) ## BARK Ecosystem The BARK ecosystem is composed of multiple components that all share the common goal to develop and benchmark behavior models: * [BARK-ML](https://github.com/bark-simulator/bark-ml/): Machine learning library for decision-making in autonomous driving. * [BARK-MCTS](https://github.com/bark-simulator/planner-mcts): Integrates a template-based C++ Monte Carlo Tree Search Library into BARK to support development of both single- and multi-agent search methods. * [BARK-Rules-MCTS](https://github.com/bark-simulator/planner-rules-mcts): Integrates traffic rules within Monte Carlo Tree Search with lexicographic ordering. * [BARK-MIQP](https://github.com/bark-simulator/planner-miqp): MINIVAN Planner based on MIQP for single- and multi-agent planning. Check out the [build instructions](https://github.com/bark-simulator/planner-miqp/blob/master/README.md). * [BARK-DB](https://github.com/bark-simulator/bark-databasse/): Provides a framework to integrate multiple BARK scenario sets into a database. The database module supports binary serialization of randomly generated scenarios to ensure exact reproducibility of behavior benchmarks across systems. * [BARK-Rule-Monitoring](https://github.com/bark-simulator/rule-monitoring): Provides runtime verification of Rules in Linear Temporal Logic (LTL) on simulated BARK traces. * [CARLA-Interface](https://github.com/bark-simulator/carla-interface): A two-way interface between [CARLA ](https://github.com/carla-simulator/carla) and BARK. BARK behavior models can control CARLA vehicles. CARLA controlled vehicles are mirrored to BARK. ## Paper If you use BARK, please cite us using the following [paper](https://arxiv.org/abs/2003.02604): ``` @inproceedings{Bernhard2020, title = {BARK: Open Behavior Benchmarking in Multi-Agent Environments}, author = {Bernhard, Julian and Esterle, Klemens and Hart, Patrick and Kessler, Tobias}, booktitle = {2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}, url = {https://arxiv.org/pdf/2003.02604.pdf}, year = {2020} } ``` ## Contributing Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. Please make sure to update tests as appropriate. ## License BARK specific code is distributed under [MIT](https://choosealicense.com/licenses/mit/) License.


نیازمندی

مقدار نام
>=3.3.2 matplotlib
>=1.18.1 numpy
>=4.4.2 lxml
>=1.4.1 scipy
>=2.3.1 sphinx
>=0.4.3 sphinx-rtd-theme
>=0.24.2 pandas
>=1.4.4 autopep8
>=1.4.4 cpplint
>=1.9.6 pygame
>=2.3.1 aabbtree
>=1.3.0 ray
>=5.7.2 psutil
>=6.0.3 notebook
>=1.0.0 jupyter
>=7.13.0 ipython


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl bark-simulator-1.4.9:

    pip install bark-simulator-1.4.9.whl


نصب پکیج tar.gz bark-simulator-1.4.9:

    pip install bark-simulator-1.4.9.tar.gz