معرفی شرکت ها


bamt-1.1.40


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

data modeling and analysis tool based on Bayesian networks
ویژگی مقدار
سیستم عامل -
نام فایل bamt-1.1.40
نام bamt
نسخه کتابخانه 1.1.40
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Roman Netrogolov
ایمیل نویسنده romius2001@gmail.com
آدرس صفحه اصلی https://github.com/ITMO-NSS-team/BAMT
آدرس اینترنتی https://pypi.org/project/bamt/
مجوز BSD-3-Clause
.. image:: /docs/images/BAMT_white_bg.png :align: center :alt: BAMT framework logo .. start-badges .. list-table:: :stub-columns: 1 * - package - | |pypi| |py_8| |py_9| |py_10| * - tests - | |Build| |coverage| * - docs - |docs| * - license - | |license| * - stats - | |downloads_stats| |downloads_monthly| |downloads_weekly| Repository of a data modeling and analysis tool based on Bayesian networks BAMT - Bayesian Analytical and Modelling Toolkit. This repository contains a data modeling and analysis tool based on Bayesian networks. It can be divided into two main parts - algorithms for constructing and training Bayesian networks on data and algorithms for applying Bayesian networks for filling gaps, generating synthetic data, assessing edges strength e.t.c. .. image:: docs/images/bamt_readme_scheme.png :target: docs/images/bamt_readme_scheme.png :align: center :alt: bamt readme scheme Installation ^^^^^^^^^^^^ BAMT package is available via PyPi: .. code-block:: bash pip install bamt BAMT Features ^^^^^^^^^^^^^ The following algorithms for Bayesian Networks learning are implemented: * Building the structure of a Bayesian network based on expert knowledge by directly specifying the structure of the network; * Building the structure of a Bayesian network on data using three algorithms - Hill Climbing, evolutionary and PC (evolutionary and PC are currently under development). For Hill Climbing, the following score functions are implemented - MI, K2, BIC, AIC. The algorithms work on both discrete and mixed data. * Learning the parameters of distributions in the nodes of the network based on Gaussian distribution and Mixture Gaussian distribution with automatic selection of the number of components. * Non-parametric learning of distributions at nodes using classification and regression models. * BigBraveBN - algorithm for structural learning of Bayesian networks with a large number of nodes. Tested on networks with up to 500 nodes. Difference from existing implementations: * Algorithms work on mixed data; * Structural learning implements score-functions for mixed data; * Parametric learning implements the use of a mixture of Gaussian distributions to approximate continuous distributions; * Non-parametric learning of distributions with various user-specified regression and classification models; * The algorithm for structural training of large Bayesian networks (> 10 nodes) is based on local training of small networks with their subsequent algorithmic connection. .. image:: img/BN_gif.gif :target: img/BN_gif.gif :align: center :alt: bn example gif For example, in terms of data analysis and modeling using Bayesian networks, a pipeline has been implemented to generate synthetic data by sampling from Bayesian networks. .. image:: img/synth_gen.png :target: img/synth_gen.png :align: center :height: 300px :width: 600px :alt: synthetics generation How to use ^^^^^^^^^^ Then the necessary classes are imported from the library: .. code-block:: python import bamt.networks as Nets Next, a network instance is created and training (structure and parameters) is performed: .. code-block:: python bn = Nets.HybridBN(has_logit=False, use_mixture=True) bn.add_edges(discretized_data, scoring_function=('K2',K2Score)) bn.fit_parameters(data) Examples & Tutorials ^^^^^^^^^^^^^^^^^^^^^^ More examples can be found in `tutorials <https://github.com/ITMO-NSS-team/BAMT/tree/master/tutorials>`__ and `Documentation <https://bamt.readthedocs.io/en/latest/examples/learn_save.html>`__. Publications about BAMT ^^^^^^^^^^^^^^^^^^^^^^^ We have published several articles about BAMT: * `Advanced Approach for Distributions Parameters Learning in Bayesian Networks with Gaussian Mixture Models and Discriminative Models <https://www.mdpi.com/2227-7390/11/2/343>`__ (2023) * `BigBraveBN: algorithm of structural learning for bayesian networks with a large number of nodes <https://www.sciencedirect.com/science/article/pii/S1877050922016945>`__ (2022) * `MIxBN: Library for learning Bayesian networks from mixed data <https://www.sciencedirect.com/science/article/pii/S1877050921020925>`__ (2021) * `Oil and Gas Reservoirs Parameters Analysis Using Mixed Learning of Bayesian Networks <https://link.springer.com/chapter/10.1007/978-3-030-77961-0_33>`__ (2021) * `Bayesian Networks-based personal data synthesis <https://dl.acm.org/doi/abs/10.1145/3411170.3411243>`__ (2020) Project structure ^^^^^^^^^^^^^^^^^ The latest stable version of the library is available in the master branch. It includes the following modules and direcotries: * `bamt <https://github.com/ITMO-NSS-team/BAMT/tree/master/bamt>`__ - directory with the framework code: * Preprocessing - module for data preprocessing * Networks - module for building and training Bayesian networks * Nodes - module for nodes support of Bayesian networks * Utilities - module for mathematical and graph utilities * `data <https://github.com/ITMO-NSS-team/BAMT/tree/master/data>`__ - directory with data for experiments and tests * `tests <https://github.com/ITMO-NSS-team/BAMT/tree/master/tests>`__ - directory with unit and integration tests * `tutorials <https://github.com/ITMO-NSS-team/BAMT/tree/master/tutorials>`__ - directory with tutorials * `docs <https://github.com/ITMO-NSS-team/BAMT/tree/master/docs>`__ - directory with RTD documentation Preprocessing ============= Preprocessor module allows user to transform data according pipeline (similar to pipeline in scikit-learn). Networks ======== Three types of networks are implemented: * HybridBN - Bayesian network with mixed data * DiscreteBN - Bayesian network with discrete data * ContinuousBN - Bayesian network with continuous data They are inherited from the abstract class BaseNetwork. Nodes ===== Contains classes for nodes of Bayesian networks. Utilities ========= Utilities module contains mathematical and graph utilities to support the main functionality of the library. Web-BAMT ^^^^^^^^ A web interface for BAMT is currently under development. The repository is available at `web-BAMT <https://github.com/aimclub/Web-BAMT>`__ Contacts ^^^^^^^^ If you have questions or suggestions, you can contact us at the following address: ideeva@itmo.ru (Irina Deeva) Our resources: * `Natural Systems Simulation Team <https://itmo-nss-team.github.io/>`__ * `NSS team Telegram channel <https://t.me/NSS_group>`__ * `NSS lab YouTube channel <https://www.youtube.com/@nsslab/videos>`__ .. |docs| image:: https://readthedocs.org/projects/bamt/badge/?version=latest :target: https://bamt.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. |pypi| image:: https://badge.fury.io/py/bamt.svg :target: https://badge.fury.io/py/bamt .. |py_10| image:: https://img.shields.io/badge/python_3.10-passing-success :alt: Supported Python Versions :target: https://img.shields.io/badge/python_3.10-passing-success .. |py_8| image:: https://img.shields.io/badge/python_3.8-passing-success :alt: Supported Python Versions :target: https://img.shields.io/badge/python_3.8-passing-success .. |py_9| image:: https://img.shields.io/badge/python_3.9-passing-success :alt: Supported Python Versions :target: https://img.shields.io/badge/python_3.9-passing-success .. |license| image:: https://img.shields.io/github/license/ITMO-NSS-team/BAMT :alt: Supported Python Versions :target: https://github.com/ITMO-NSS-team/BAMT/blob/master/LICENCE .. |downloads_stats| image:: https://static.pepy.tech/personalized-badge/bamt?period=total&units=international_system&left_color=grey&right_color=blue&left_text=downloads :target: https://pepy.tech/project/bamt .. |downloads_monthly| image:: https://static.pepy.tech/personalized-badge/bamt?period=month&units=international_system&left_color=grey&right_color=blue&left_text=downloads/month :target: https://pepy.tech/project/bamt .. |downloads_weekly| image:: https://static.pepy.tech/personalized-badge/bamt?period=week&units=international_system&left_color=grey&right_color=blue&left_text=downloads/week :target: https://pepy.tech/project/bamt .. |Build| image:: https://github.com/ITMO-NSS-team/BAMT/actions/workflows/bamtcodecov.yml/badge.svg :target: https://github.com/ITMO-NSS-team/BAMT/actions/workflows/bamtcodecov.yml .. |coverage| image:: https://codecov.io/github/ITMO-NSS-team/BAMT/branch/master/graph/badge.svg?token=9ZX37JNIYZ :target: https://codecov.io/github/ITMO-NSS-team/BAMT


نیازمندی

مقدار نام
==65.6.3 setuptools
>=1.24.2 numpy
==3.6.2 matplotlib
==1.5.2 pandas
==0.14.8 pomegranate
==1.6.2 gmr
==1.2.0 scikit-learn
>=1.8.0,<2.0.0 scipy
>=0.2.1 pyvis
>=0.5.1,<0.6.0 missingno
==0.1.20 pgmpy
==0.2.2 pyitlib


زبان مورد نیاز

مقدار نام
>=3.9,<3.11 Python


نحوه نصب


نصب پکیج whl bamt-1.1.40:

    pip install bamt-1.1.40.whl


نصب پکیج tar.gz bamt-1.1.40:

    pip install bamt-1.1.40.tar.gz