معرفی شرکت ها


balloon-learning-environment-1.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

-
ویژگی مقدار
سیستم عامل -
نام فایل balloon-learning-environment-1.0.1
نام balloon-learning-environment
نسخه کتابخانه 1.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/balloon-learning-environment/
مجوز -
# Balloon Learning Environment [Docs][docs] <div align="center"> <img src="https://github.com/google/balloon-learning-environment/blob/master/docs/imgs/ble_logo_small.png?raw=True" height="200px"> <br><br> </div> The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark environment for deep reinforcement learning algorithms, and is a followup to the Nature paper ["Autonomous navigation of stratospheric balloons using reinforcement learning"](https://www.nature.com/articles/s41586-020-2939-8). ## Getting Started Note: The BLE requires python >= 3.7 The BLE can easily be installed with pip: ``` $ pip install --upgrade pip $ pip install balloon_learning_environment ``` To install with the `acme` package: ``` $ pip install --upgrade pip $ pip install balloon_learning_environment[acme] ``` Once the package has been installed, you can test it runs correctly by evaluating one of the benchmark agents: ``` python -m balloon_learning_environment.eval.eval \ --agent=station_seeker \ --renderer=matplotlib \ --suite=micro_eval \ --output_dir=/tmp/ble/eval ``` To install from GitHub directly, run the following commands from the root directory where you cloned the repository: ``` $ pip install --upgrade pip $ pip install .[acme] ``` ## Ensure the BLE is Using Your GPU/TPU The BLE contains a VAE for generating winds, which you will probably want to run on your accelerator. See the jax documentation for installing with [GPU](https://github.com/google/jax#pip-installation-gpu-cuda) or [TPU](https://github.com/google/jax#pip-installation-google-cloud-tpu). As a sanity check, you can open interactive python and run: ``` from balloon_learning_environment.env import balloon_env env = balloon_env.BalloonEnv() ``` If you are not running with GPU/TPU, you should see a log like: ``` WARNING:absl:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.) ``` If you don't see this log, you should be good to go! ## Next Steps For more information, see the [docs][docs]. ## Giving credit If you use the Balloon Learning Environment in your work, we ask that you use the following BibTeX entry: ``` @software{Greaves_Balloon_Learning_Environment_2021, author = {Greaves, Joshua and Candido, Salvatore and Dumoulin, Vincent and Goroshin, Ross and Ponda, Sameera S. and Bellemare, Marc G. and Castro, Pablo Samuel}, month = {12}, title = {{Balloon Learning Environment}}, url = {https://github.com/google/balloon-learning-environment}, version = {1.0.0}, year = {2021} } ``` If you use the `ble_wind_field` dataset, you should also cite ``` Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J-N. (2017): Complete ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service (C3S) Data Store (CDS). (Accessed on 01-04-2021) ``` [docs]: https://balloon-learning-environment.readthedocs.io/en/latest/


نیازمندی

مقدار نام
- absl-py
>=4.0.0 dopamine-rl
- flax
- gin-config
- gym
>=0.2.28 jax
>=0.1.76 jaxlib
<=0.3.0 opensimplex
- s2sphere
- scikit-learn
- tensorflow
- tensorflow-probability
- transitions
- dm-acme
- dm-haiku
- dm-reverb
- dm-sonnet
- rlax
- xmanager


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl balloon-learning-environment-1.0.1:

    pip install balloon-learning-environment-1.0.1.whl


نصب پکیج tar.gz balloon-learning-environment-1.0.1:

    pip install balloon-learning-environment-1.0.1.tar.gz