معرفی شرکت ها


bakta-1.5.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Bakta: rapid & standardized annotation of bacterial genomes, MAGs & plasmids
ویژگی مقدار
سیستم عامل POSIX :: Linux
نام فایل bakta-1.5.1
نام bakta
نسخه کتابخانه 1.5.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Oliver Schwengers
ایمیل نویسنده oliver.schwengers@computational.bio.uni-giessen.de
آدرس صفحه اصلی https://github.com/oschwengers/bakta
آدرس اینترنتی https://pypi.org/project/bakta/
مجوز GPLv3
[![DOI:10.1099/mgen.0.000685](https://zenodo.org/badge/DOI/10.1099/mgen.0.000685.svg)](https://doi.org/10.1099/mgen.0.000685) [![License: GPL v3](https://img.shields.io/badge/License-GPL%20v3-brightgreen.svg)](https://github.com/oschwengers/bakta/blob/master/LICENSE) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/bakta.svg) ![PyPI - Status](https://img.shields.io/pypi/status/bakta.svg) ![GitHub release](https://img.shields.io/github/release/oschwengers/bakta.svg) [![PyPI](https://img.shields.io/pypi/v/bakta.svg)](https://pypi.org/project/bakta) [![Conda](https://img.shields.io/conda/v/bioconda/bakta.svg)](https://bioconda.github.io/recipes/bakta/README.html) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4247252.svg)](https://doi.org/10.5281/zenodo.4247252) # Bakta: rapid & standardized annotation of bacterial genomes, MAGs & plasmids Bakta is a tool for the rapid & standardized annotation of bacterial genomes and plasmids from both isolates and MAGs. It provides **dbxref**-rich and **sORF**-including annotations in machine-readable `JSON` & bioinformatics standard file formats for automatic downstream analysis. ## Contents - [Description](#description) - [Installation](#installation) - [Examples](#examples) - [Input & Output](#input-and-output) - [Usage](#usage) - [Annotation Workflow](#annotation-workflow) - [Database](#database) - [Genome Submission](#genome-submission) - [Protein bulk annotation](#protein-bulk-annotation) - [Web version](#web-version) - [Citation](#citation) - [FAQ](#faq) - [Issues & Feature Requests](#issues-and-feature-requests) ## Description - **Comprehensive & taxonomy-independent database** Bakta provides a large and taxonomy-independent database using UniProt's entire [UniRef](https://www.uniprot.org/uniref/) protein sequence cluster universe. Thus, it achieves favourable annotations in terms of sensitivity and specificity along the broad continuum ranging from well-studied species to unknown genomes from MAGs. - **Protein sequence identification** Bakta exactly identifies known identical protein sequences (**IPS**) from RefSeq and UniProt allowing the fine-grained annotation of gene alleles (`AMR`) or closely related but distinct protein families. This is achieved via an alignment-free sequence identification (**AFSI**) approach using full-length `MD5` protein sequence hash digests. - **Fast** This AFSI approach substantially accellerates the annotation process by avoiding computationally expensive homology searches for identified genes. Thus, Bakta can annotate a typical bacterial genome in 10 &plusmn;5 min on a laptop, plasmids in a couple of seconds/minutes. - **Database cross-references** Fostering the [FAIR](https://www.go-fair.org/fair-principles) principles, Bakta exploits its AFSI approach to annotate CDS with database cross-references (**dbxref**) to RefSeq (`WP_*`), UniRef100 (`UniRef100_*`) and UniParc (`UPI*`). By doing so, IPS allow the surveillance of distinct gene alleles and streamlining comparative analysis as well as posterior (external) annotations of `putative` & `hypothetical` protein sequences which can be mapped back to existing CDS via these exact & stable identifiers (*E. coli* gene [ymiA](https://www.uniprot.org/uniprot/P0CB62) [...more](https://www.uniprot.org/help/dubious_sequences)). Currently, Bakta identifies ~214.8 mio, ~199 mio and ~161 mio distinct protein sequences from UniParc, UniRef100 and RefSeq, respectively. Hence, for certain genomes, up to 99 % of all CDS can be identified this way, skipping computationally expensive sequence alignments. - **FAIR annotations** To provide standardized annotations adhearing to FAIR principles, Bakta utilizes a versioned custom annotation database comprising UniProt's [UniRef100 & UniRef90](https://www.uniprot.org/uniref/) protein clusters (FAIR -> [DOI](http://dx.doi.org/10.1038/s41597-019-0180-9)/[DOI](https://doi.org/10.1093/nar/gkaa1100)) enriched with dbxrefs (`GO`, `COG`, `EC`) and annotated by specialized niche databases. For each db version we provide a comprehensive log file of all imported sequences and annotations. - **Small proteins / short open reading frames** Bakta detects and annotates small proteins/short open reading frames (**sORF**) which are not predicted by tools like `Prodigal`. - **Expert annotation systems** To provide high quality annotations for certain proteins of higher interest, *e.g.* AMR & VF genes, Bakta includes & merges different expert annotation systems. Currently, Bakta uses NCBI's AMRFinderPlus for AMR gene annotations as well as an generalized protein sequence expert system with distinct coverage, identity and priority values for each sequence, currenlty comprising the [VFDB](http://www.mgc.ac.cn/VFs/main.htm) as well as NCBI's [BlastRules](https://ftp.ncbi.nih.gov/pub/blastrules/). - **Comprehensive workflow** Bakta annotates ncRNA cis-regulatory regions, oriC/oriV/oriT and assembly gaps as well as standard feature types: tRNA, tmRNA, rRNA, ncRNA genes, CRISPR, CDS and pseudogenes. - **GFF3 & INSDC conform annotations** Bakta writes GFF3 and INSDC-compliant (Genbank & EMBL) annotation files ready for submission (checked via [GenomeTools GFF3Validator](http://genometools.org/cgi-bin/gff3validator.cgi), [table2asn_GFF](https://www.ncbi.nlm.nih.gov/genbank/genomes_gff/#run) and [ENA Webin-CLI](https://github.com/enasequence/webin-cli) for GFF3 and EMBL file formats, respectively for representative genomes of all ESKAPE species). - **Bacteria & plasmids only** Bakta was designed to annotate bacteria (isolates & MAGs) and plasmids, only. This decision by design has been made in order to tweak the annotation process regarding tools, preferences & databases and to streamline further development & maintenance of the software. - **Reasoning** By annotating bacterial genomes in a standardized, taxonomy-independent, high-throughput and local manner, Bakta aims at a well-balanced tradeoff between fully featured but computationally demanding pipelines like [PGAP](https://github.com/ncbi/pgap) and rapid highly customizable offline tools like [Prokka](https://github.com/tseemann/prokka). Indeed, Bakta is heavily inspired by Prokka (kudos to [Torsten Seemann](https://github.com/tseemann)) and many command line options are compatible for the sake of interoperability and user convenience. Hence, if Bakta does not fit your needs, please consider trying Prokka. ## Installation Bakta can be installed via BioConda, Docker, Singularity and Pip. However, we encourage to use [Conda](https://conda.io/projects/conda/en/latest/user-guide/install/index.html) or [Docker](https://www.docker.com/get-started)/[Singularity](https://sylabs.io/singularity) to automatically install all required 3rd party dependencies. In all cases a mandatory [database](#database-download) must be downloaded. ### BioConda ```bash conda install -c conda-forge -c bioconda bakta ``` ### Docker ```bash sudo docker pull oschwengers/bakta sudo docker run oschwengers/bakta --help ``` Installation instructions and get-started guides: Docker [docs](https://docs.docker.com) For further convenience, we provide a shell script (`bakta-docker.sh`) handling Docker related parameters (volume mounting, user IDs, etc): ```bash bakta-docker.sh --db <db-path> --output <output-path> <input> ``` ### Singularity ```bash singularity build bakta.sif docker://oschwengers/bakta:latest singularity run bakta.sif --help ``` Installation instructions, get-started and guides: Singularity [docs](https://sylabs.io/docs) ### Pip ```bash python3 -m pip install --user bakta ``` Bacta requires the following 3rd party software tools which must be installed and executable to use the full set of features: - tRNAscan-SE (2.0.8) <https://doi.org/10.1101/614032> <http://lowelab.ucsc.edu/tRNAscan-SE> - Aragorn (1.2.38) <http://dx.doi.org/10.1093/nar/gkh152> <http://130.235.244.92/ARAGORN> - INFERNAL (1.1.4) <https://dx.doi.org/10.1093%2Fbioinformatics%2Fbtt509> <http://eddylab.org/infernal> - PILER-CR (1.06) <https://doi.org/10.1186/1471-2105-8-18> <http://www.drive5.com/pilercr> - Prodigal (2.6.3) <https://dx.doi.org/10.1186%2F1471-2105-11-119> <https://github.com/hyattpd/Prodigal> - Hmmer (3.3.2) <https://doi.org/10.1093/nar/gkt263> <http://hmmer.org> - Diamond (2.0.14) <https://doi.org/10.1038/nmeth.3176> <https://github.com/bbuchfink/diamond> - Blast+ (2.12.0) <https://www.ncbi.nlm.nih.gov/pubmed/2231712> <https://blast.ncbi.nlm.nih.gov> - AMRFinderPlus (3.10.23) <https://github.com/ncbi/amr> - DeepSig (1.2.5) <https://doi.org/10.1093/bioinformatics/btx818> ### Database download Bakta requires a mandatory database which is publicly hosted at Zenodo: [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4247252.svg)](https://doi.org/10.5281/zenodo.4247252) Further information is provided in the [database](#database) section below. List available DB versions: ```bash bakta_db list ... ``` Download the most recent compatible database version we recommend to use the internal database download & setup tool: ```bash bakta_db download --output <output-path> ``` Of course, the database can also be downloaded manually: ```bash wget https://zenodo.org/record/7025248/files/db.tar.gz tar -xzf db.tar.gz rm db.tar.gz amrfinder_update --force_update --database db/amrfinderplus-db/ ``` As an additional data repository backup, we provide the most recent database version via our institute servers [here](https://jlubox.uni-giessen.de/getlink/fiWhS6LJi8AizXvspaRxRzPN/db.tar.gz). However, the bandwith is limited. Hence, please use it with caution and only if Zenodo might be temporarily uncreachable or slow. In these cases, please also download the AMRFinderPlus database as indicated above. Update an existing database: ```bash bakta_db update --db <existing-db-path> [--tmp-dir <tmp-directory>] ``` The database path can be provided either via parameter (`--db`) or environment variable (`BAKTA_DB`): ```bash bakta --db <db-path> genome.fasta export BAKTA_DB=<db-path> bakta genome.fasta ``` For system-wide setups, the database can also be copied to the Bakta base directory: ```bash cp -r db/ <bakta-installation-dir> ``` As Bakta takes advantage of AMRFinderPlus for the annotation of AMR genes, AMRFinder is required to setup its own internal databases in a `<amrfinderplus-db>` subfolder within the Bakta database `<db-path>`, once via `amrfinder_update --force_update --database <db-path>/amrfinderplus-db/`. To ease this process we recommend to use Bakta's internal download procedure. ## Examples Simple: ```bash bakta --db <db-path> genome.fasta ``` Expert: verbose output writing results to *results* directory with *ecoli123* file `prefix` and *eco634* `locus tag` using an existing prodigal training file, using additional replicon information and 8 threads: ```bash bakta --db <db-path> --verbose --output results/ --prefix ecoli123 --locus-tag eco634 --prodigal-tf eco.tf --replicons replicon.tsv --threads 8 genome.fasta ``` ## Input and Output ### Input Bakta accepts bacterial genomes and plasmids (complete / draft assemblies) in (zipped) fasta format. For a full description of how further genome information can be provided and workflow customizations can be set, please have a look at the [Usage](#usage) section or this [manual](https://bakta.readthedocs.io/). #### Replicon meta data table To fine-tune the very details of each sequence in the input fasta file, Bakta accepts a replicon meta data table provided in `csv` or `tsv` file format: `--replicons <file.tsv>`. Thus, complete replicons within partially completed draft assemblies can be marked & handled as such, *e.g.* detection & annotation of features spanning sequence edges. Table format: original sequence id | new sequence id | type | topology | name ----|----------------|----------------|----------------|---------------- `old id` | `new id`, `<empty>` | `chromosome`, `plasmid`, `contig`, `<empty>` | `circular`, `linear`, `<empty>` | `name`, `<empty>` For each input sequence recognized via the `original locus id` a `new locus id`, the replicon `type` and the `topology` as well a `name` can be explicitly set. Shortcuts: - `chromosome`: `c` - `plasmid`: `p` - `circular`: `c` - `linear`: `l` `<empty>` values (`-` / ``) will be replaced by defaults. If **new locus id** is `empty`, a new contig name will be autogenerated. Defaults: - type: `contig` - topology: `linear` Example: original locus id | new locus id | type | topology | name ----|----------------|----------------|----------------|---------------- NODE_1 | chrom | `chromosome` | `circular` | `-` NODE_2 | p1 | `plasmid` | `c` | `pXYZ1` NODE_3 | p2 | `p` | `c` | `pXYZ2` NODE_4 | special-contig-name-xyz | `-` | - NODE_5 | `` | `-` | - #### User provided protein sequences Bakta accepts user provided trusted protein sequences via `--proteins` in either GenBank (CDS features) or Fasta format. Using the Fasta format, each reference sequence can be provided in a short or long format: ```bash # short: >id gene~~~product~~~dbxrefs MAQ... # long: >id min_identity~~~min_query_cov~~~min_subject_cov~~~gene~~~product~~~dbxrefs MAQ... ``` Allowed values: field | value(s) | example ----|----------------|---------------- min_identity | `int`, `float` | 80, 90.3 min_query_cov | `int`, `float` | 80, 90.3 min_subject_cov | `int`, `float` | 80, 90.3 gene | `<empty>`, `string` | msp product | `string` | my special protein dbxrefs | `<empty>`, `db:id`, `,` separated list | `VFDB:VF0511` Protein sequences provided in short Fasta or GenBank format are searched with default thresholds of 90%, 80% and 80% for minimal identity, query and subject coverage, respectively. ### Output Annotation results are provided in standard bioinformatics file formats: - `<prefix>.tsv`: annotations as simple human readble TSV - `<prefix>.gff3`: annotations & sequences in GFF3 format - `<prefix>.gbff`: annotations & sequences in (multi) GenBank format - `<prefix>.embl`: annotations & sequences in (multi) EMBL format - `<prefix>.fna`: replicon/contig DNA sequences as FASTA - `<prefix>.ffn`: feature nucleotide sequences as FASTA - `<prefix>.faa`: CDS/sORF amino acid sequences as FASTA - `<prefix>.hypotheticals.tsv`: further information on hypothetical protein CDS as simple human readble tab separated values - `<prefix>.hypotheticals.faa`: hypothetical protein CDS amino acid sequences as FASTA - `<prefix>.txt`: summary as TXT The `<prefix>` can be set via `--prefix <prefix>`. If no prefix is set, Bakta uses the input file prefix. Additionally, Bakta provides detailed information on each annotated feature in a standardized machine-readable JSON file `<prefix>.json`: ```json { "genome": { "genus": "Escherichia", "species": "coli", ... }, "stats": { "size": 5594605, "gc": 0.497, ... }, "features": [ { "type": "cds", "contig": "contig_1", "start": 971, "stop": 1351, "strand": "-", "gene": "lsoB", "product": "type II toxin-antitoxin system antitoxin LsoB", ... }, ... ], "sequences": [ { "id": "c1", "description": "[organism=Escherichia coli] [completeness=complete] [topology=circular]", "sequence": "AGCTTT...", "length": 5498578, "complete": true, "type": "chromosome", "topology": "circular" ... }, ... ] } ``` Exemplary annotation result files for several genomes (mostly ESKAPE species) are hosted at Zenodo: [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4770026.svg)](https://doi.org/10.5281/zenodo.4770026) ## Usage ```bash usage: bakta [--db DB] [--min-contig-length MIN_CONTIG_LENGTH] [--prefix PREFIX] [--output OUTPUT] [--genus GENUS] [--species SPECIES] [--strain STRAIN] [--plasmid PLASMID] [--complete] [--prodigal-tf PRODIGAL_TF] [--translation-table {11,4}] [--gram {+,-,?}] [--locus LOCUS] [--locus-tag LOCUS_TAG] [--keep-contig-headers] [--replicons REPLICONS] [--compliant] [--proteins PROTEINS] [--skip-trna] [--skip-tmrna] [--skip-rrna] [--skip-ncrna] [--skip-ncrna-region] [--skip-crispr] [--skip-cds] [--skip-sorf] [--skip-gap] [--skip-ori] [--help] [--verbose] [--threads THREADS] [--tmp-dir TMP_DIR] [--version] <genome> Rapid & standardized annotation of bacterial genomes, MAGs & plasmids positional arguments: <genome> Genome sequences in (zipped) fasta format Input / Output: --db DB, -d DB Database path (default = <bakta_path>/db). Can also be provided as BAKTA_DB environment variable. --min-contig-length MIN_CONTIG_LENGTH, -m MIN_CONTIG_LENGTH Minimum contig size (default = 1; 200 in compliant mode) --prefix PREFIX, -p PREFIX Prefix for output files --output OUTPUT, -o OUTPUT Output directory (default = current working directory) Organism: --genus GENUS Genus name --species SPECIES Species name --strain STRAIN Strain name --plasmid PLASMID Plasmid name Annotation: --complete All sequences are complete replicons (chromosome/plasmid[s]) --prodigal-tf PRODIGAL_TF Path to existing Prodigal training file to use for CDS prediction --translation-table {11,4} Translation table: 11/4 (default = 11) --gram {+,-,?} Gram type for signal peptide predictions: +/-/? (default = '?') --locus LOCUS Locus prefix (default = 'contig') --locus-tag LOCUS_TAG Locus tag prefix (default = autogenerated) --keep-contig-headers Keep original contig headers --replicons REPLICONS, -r REPLICONS Replicon information table (tsv/csv) --compliant Force Genbank/ENA/DDJB compliance --proteins PROTEINS Fasta file of trusted protein sequences for CDS annotation Workflow: --skip-trna Skip tRNA detection & annotation --skip-tmrna Skip tmRNA detection & annotation --skip-rrna Skip rRNA detection & annotation --skip-ncrna Skip ncRNA detection & annotation --skip-ncrna-region Skip ncRNA region detection & annotation --skip-crispr Skip CRISPR array detection & annotation --skip-cds Skip CDS detection & annotation --skip-pseudo Skip pseudogene detection & annotation --skip-sorf Skip sORF detection & annotation --skip-gap Skip gap detection & annotation --skip-ori Skip oriC/oriT detection & annotation General: --help, -h Show this help message and exit --verbose, -v Print verbose information --debug Run Bakta in debug mode. Temp data will not be removed. --threads THREADS, -t THREADS Number of threads to use (default = number of available CPUs) --tmp-dir TMP_DIR Location for temporary files (default = system dependent auto detection) --version show program's version number and exit ``` ## Annotation Workflow ### RNAs 1. tRNA genes: tRNAscan-SE 2.0 2. tmRNA genes: Aragorn 3. rRNA genes: Infernal vs. Rfam rRNA covariance models 4. ncRNA genes: Infernal vs. Rfam ncRNA covariance models 5. ncRNA cis-regulatory regions: Infernal vs. Rfam ncRNA covariance models 6. CRISPR arrays: PILER-CR Bakta distinguishes ncRNA genes and (cis-regulatory) regions in order to enable the distinct handling thereof during the annotation process, *i.e.* feature overlap detection. ncRNA gene types: - sRNA - antisense - ribozyme - antitoxin ncRNA (cis-regulatory) region types: - riboswitch - thermoregulator - leader - frameshift element ### Coding sequences The structural prediction is conducted via Prodigal and complemented by a custom detection of sORF < 30 aa. To rapidly identify known protein sequences with exact sequence matches and to conduct a comprehensive annotations, Bakta utilizes a compact read-only SQLite database comprising protein sequence digests and pre-assigned annotations for millions of known protein sequences and clusters. Conceptual terms: - **UPS**: unique protein sequences identified via length and MD5 hash digests (100% coverage & 100% sequence identity) - **IPS**: identical protein sequences comprising seeds of UniProt's UniRef100 protein sequence clusters - **PSC**: protein sequences clusters comprising seeds of UniProt's UniRef90 protein sequence clusters - **PSCC**: protein sequences clusters of clusters comprising annotations of UniProt's UniRef50 protein sequence clusters **CDS**: 1. Prediction via Prodigal respecting sequences' completeness (distinct prediction for complete replicons and uncompleted contigs) 2. Discard spurious CDS via AntiFam 3. Detect translational exceptions (selenocysteines) 4. Detection of UPSs via MD5 digests and lookup of related IPS and PCS 5. Sequence alignments of remainder via Diamond vs. PSC (query/subject coverage=0.8, identity=0.5) 6. Assignment to UniRef90 or UniRef50 clusters if alignment hits achieve identities larger than 0.9 or 0.5, respectively 7. Execution of expert systems: - AMR: AMRFinderPlus - Expert proteins: NCBI BlastRules, VFDB - User proteins (optionally via `--proteins <Fasta/GenBank>`) 8. Prediction of signal peptides (optionally via `--gram <+/->`) 9. Detection of pseudogenes: 1. Search for reference PCSs using `hypothetical` CDS as seed sequences 2. Translated alignment (blastx) of reference PCSs against up-/downstream-elongated CDS regions 3. Analysis of translated alignments and detection of pseudogenization causes & effects 10. Combination of IPS, PSC, PSCC and expert system information favouring more specific annotations and avoiding redundancy CDS without IPS or PSC hits as well as those without gene symbols or product descriptions different from `hypothetical` will be marked as `hypothetical`. Such hypothetical CDS are further analyzed: 1. Detection of Pfam domains, repeats & motifs 2. Calculation of protein sequence statistics, *i.e.* molecular weight, isoelectric point **sORFs**: 1. Custom sORF detection & extraction with amino acid lengths < 30 aa 2. Apply strict feature type-dependent overlap filters 3. discard spurious sORF via AntiFam 4. Detection of UPS via MD5 hashes and lookup of related IPS 5. Sequence alignments of remainder via Diamond vs. an sORF subset of PSCs (coverage=0.9, identity=0.9) 6. Exclude sORF without sufficient annotation information 7. Prediction of signal peptides (optionally via `--gram <+/->`) sORF not identified via IPS or PSC will be discarded. Additionally, all sORF without gene symbols or product descriptions different from `hypothetical` will be discarded. Due due to uncertain nature of sORF prediction, only those identified via IPS / PSC hits exhibiting proper gene symbols or product descriptions different from `hypothetical` will be included in the final annotation. ### Miscellaneous 1. Gaps: in-mem detection & annotation of sequence gaps 2. oriC/oriV/oriT: Blast+ (cov=0.8, id=0.8) vs. [MOB-suite](https://github.com/phac-nml/mob-suite) oriT & [DoriC](http://tubic.org/doric/public/index.php) oriC/oriV sequences. Annotations of ori regions take into account overlapping Blast+ hits and are conducted based on a majority vote heuristic. Region edges are fuzzy - use with caution! ## Database The Bakta database comprises a set of AA & DNA sequence databases as well as HMM & covariance models. At its core Bakta utilizes a compact read-only SQLite db storing protein sequence digests, lengths, pre-assigned annotations and dbxrefs of UPS, IPS and PSC from: - **UPS**: UniParc / UniProtKB (241,116,844) - **IPS**: UniProt UniRef100 (223,313,098) - **PSC**: UniProt UniRef90 (99,555,646) - **PSCC**: UniProt UniRef50 (13,398,956) This allows the exact protein sequences identification via MD5 digests & sequence lengths as well as the rapid subsequent lookup of related information. Protein sequence digests are checked for hash collisions while the db creation process. IPS & PSC have been comprehensively pre-annotated integrating annotations & database *dbxrefs* from: - NCBI nonredundant proteins (IPS: 183,797,372) - NCBI COG db (PSC: 3,424,142) - KEGG Kofams (PSC: 17,787,347) - SwissProt EC/GO terms (PSC: 336,030) - NCBI AMRFinderPlus (IPS: 7,009) - NCBI NCBIfams (PSC: 13,466,827) - ISFinder db (IPS: 53,341, PSC: 11,412) - Pfam families (PSC: 3,917,555) To provide high quality annotations for distinct protein sequences of high importance (AMR, VF, *etc*) which cannot sufficiently be covered by the IPS/PSC approach, Bakta provides additional expert systems. For instance, AMR genes, are annotated via NCBI's AMRFinderPlus. An expandable alignment-based expert system supports the incorporation of high quality annotations from multiple sources. This currenlty comprises NCBI's BlastRules as well as VFDB and will be complemented with more expert annotation sources over time. Internally, this expert system is based on a Diamond DB comprising the following information in a standardized format: - source: *e.g.* BlastRules - rank: a precedence rank - min identity - min query coverage - min model coverage - gene lable - product description - dbxrefs Rfam covariance models: - ncRNA: 798 - ncRNA cis-regulatory regions: 270 ori sequences: - oriC/V: 10,878 - oriT: 502 To provide FAIR annotations, the database releases are SemVer versioned (w/o patch level), *i.e.* `<major>.<minor>`. For each version we provide a comprehensive log file tracking all imported sequences as well as annotations thereof. The db schema is represented by the `<major>` digit and automatically checked at runtime by Bakta in order to ensure compatibility. Content updates are tracked by the `<minor>` digit. All database releases (latest 4.0, 31 Gb zipped, 59 Gb unzipped) are hosted at Zenodo: [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4247252.svg)](https://doi.org/10.5281/zenodo.4247252) ## Genome Submission Most genomes annotated with Bakta should be ready-to-submid to INSDC member databases GenBank and ENA. As a first step, please register your BioProject (e.g. PRJNA123456) and your locus_tag prefix (*e.g.* ESAKAI). ```bash # annotate your genome in `--compliant` mode: $ bakta --db <db-path> -v --genus Escherichia --species "coli O157:H7" --strain Sakai --complete --compliant --locus-tag ESAKAI test/data/GCF_000008865.2.fna.gz ``` ### GenBank Genomes are submitted to GenBank via Fasta (`.fna`) and SQN files. Therefore, `.sqn` files can be created via `.gff3` files and NCBI's new [table2asn_GFF](https://www.ncbi.nlm.nih.gov/genbank/genomes_gff) tool. Please have all additional files (template.txt) prepared: ```bash # download table2asn_GFF for Linux $ wget https://ftp.ncbi.nih.gov/toolbox/ncbi_tools/converters/by_program/table2asn_GFF/linux64.table2asn_GFF.gz $ gunzip linux64.table2asn_GFF.gz # or MacOS $ https://ftp.ncbi.nih.gov/toolbox/ncbi_tools/converters/by_program/table2asn_GFF/mac.table2asn_GFF.gz $ gunzip mac.table2asn_GFF.gz $ chmod 755 linux64.table2asn_GFF.gz mac.table2asn_GFF.gz # create the SQN file: $ linux64.table2asn_GFF -M n -J -c w -t template.txt -V vbt -l paired-ends -i GCF_000008865.2.fna -f GCF_000008865.2.gff3 -o GCF_000008865.2.sqn -Z ``` ### ENA Genomes are submitted to ENA as EMBL (`.embl`) files via EBI's [Webin-CLI](https://ena-docs.readthedocs.io/en/latest/submit/general-guide/webin-cli.html) tool. Please have all additional files (manifest.tsv, chrom-list.tsv) prepared as described [here](https://ena-docs.readthedocs.io/en/latest/submit/fileprep/assembly.html#flat-file). ```bash # download ENA Webin-CLI $ wget https://github.com/enasequence/webin-cli/releases/download/v4.0.0/webin-cli-4.0.0.jar $ gzip -k GCF_000008865.2.embl $ gzip -k chrom-list.tsv $ java -jar webin-cli-4.0.0.jar -submit -userName=<EMAIL> -password <PWD> -context genome -manifest manifest.tsv ``` Exemplarey manifest.tsv and chrom-list.tsv files might look like: ```bash $ cat chrom-list.tsv STUDY PRJEB44484 SAMPLE ERS6291240 ASSEMBLYNAME GCF ASSEMBLY_TYPE isolate COVERAGE 100 PROGRAM SPAdes PLATFORM Illumina MOLECULETYPE genomic DNA FLATFILE GCF_000008865.2.embl.gz CHROMOSOME_LIST chrom-list.tsv.gz $ cat chrom-list.tsv contig_1 contig_1 circular-chromosome contig_2 contig_2 circular-plasmid contig_3 contig_3 circular-plasmid ``` ## Protein bulk annotation For the direct bulk annotation of protein sequences aside from the genome, Bakta provides a dedicated CLI entry point `bakta_proteins`: Examples: ```bash bakta_proteins --db <db-path> input.fasta bakta_proteins --db <db-path> --prefix test --output test --proteins special.faa --threads 8 input.fasta ``` ### Output Annotation results are provided in standard bioinformatics file formats: - `<prefix>.tsv`: annotations as simple human readble TSV - `<prefix>.faa`: protein sequences as FASTA - `<prefix>.hypotheticals.tsv`: further information on hypothetical proteins as simple human readble tab separated values The `<prefix>` can be set via `--prefix <prefix>`. If no prefix is set, Bakta uses the input file prefix. ### Usage ```bash usage: bakta_proteins [--db DB] [--output OUTPUT] [--prefix PREFIX] [--proteins PROTEINS] [--help] [--threads THREADS] [--tmp-dir TMP_DIR] [--version] <input> Rapid & standardized annotation of bacterial genomes, MAGs & plasmids positional arguments: <input> Protein sequences in (zipped) fasta format Input / Output: --db DB, -d DB Database path (default = <bakta_path>/db). Can also be provided as BAKTA_DB environment variable. --output OUTPUT, -o OUTPUT Output directory (default = current working directory) --prefix PREFIX, -p PREFIX Prefix for output files Annotation: --proteins PROTEINS Fasta file of trusted protein sequences for annotation Runtime & auxiliary options: --help, -h Show this help message and exit --threads THREADS, -t THREADS Number of threads to use (default = number of available CPUs) --tmp-dir TMP_DIR Location for temporary files (default = system dependent auto detection) --version, -V show program's version number and exit ``` ## Web version For further convenience, we developed an accompanying web application available at https://bakta.computational.bio. This interactive web application provides an interactive genome browsers, aggregated feature counts and a searchable data table with detailed information on each predicted feature as well as dbxref-linked records to public databases. Of note, this web application can also be used to visualize offline annotation results conducted by using the command line version. Therefore, the web application provides an offline viewer accepting JSON result files which are parsed and visualized locally within the browser without sending any data to the server. ## Citation If you use Bakta in your research, please cite this paper: > Schwengers O., Jelonek L., Dieckmann M. A., Beyvers S., Blom J., Goesmann A. (2021). Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microbial Genomics, 7(11). https://doi.org/10.1099/mgen.0.000685 Bakta is *standing on the shoulder of giants* taking advantage of many great software tools and databases. If you find any of these useful for your research, please cite these primary sources, as well. ### Tools - tRNAscan-SE 2.0 <https://doi.org/10.1093/nar/gkab688> - Aragorn <https://doi.org/10.1093/nar/gkh152> - Infernal <https://doi.org/10.1093/bioinformatics/btt509> - PilerCR <https://doi.org/10.1186/1471-2105-8-18> - Prodigal <https://doi.org/10.1186/1471-2105-11-119> - Diamond <https://doi.org/10.1038/s41592-021-01101-x> - BLAST+ <https://doi.org/10.1186/1471-2105-10-421> - HMMER <https://doi.org/10.1371/journal.pcbi.1002195> - AMRFinderPlus <https://doi.org/10.1038/s41598-021-91456-0> - DeepSig <https://doi.org/10.1093/bioinformatics/btx818> ### Databases - Rfam: <https://doi.org/10.1002/cpbi.51> - Mob-suite: <https://doi.org/10.1099/mgen.0.000206> - DoriC: <https://doi.org/10.1093/nar/gky1014> - AntiFam: <https://doi.org/10.1093/database/bas003> - UniProt: <https://doi.org/10.1093/nar/gky1049> - RefSeq: <https://doi.org/10.1093/nar/gkx1068> - COG: <https://doi.org/10.1093/bib/bbx117> - KEGG: <https://doi.org/10.1093/bioinformatics/btz859> - AMRFinder: <https://doi.org/10.1128/AAC.00483-19> - ISFinder: <https://doi.org/10.1093/nar/gkj014> - Pfam: <https://doi.org/10.1093/nar/gky995> - VFDB: <https://doi.org/10.1093/nar/gky1080> ## FAQ - **AMRFinder fails** If AMRFinder constantly crashes even on fresh setups and Bakta's database was downloaded manually, then AMRFinder needs to setup its own internal database. This is required only once: `amrfinder_update --force_update --database <bakta-db>/amrfinderplus-db`. You could also try Bakta's internal database download logic automatically taking care of this: `bakta_db download --output <bakta-db>` - **DeepSig not found in Conda environment** For the prediction of signal predictions, Bakta uses DeepSig that is currently not available for MacOS. Therefore, we decided to exclude DeepSig from Bakta's default Conda dependencies because otherwise it would not be installable on MacOS systems. On Linux systems it can be installed via `conda install -c conda-forge -c bioconda python=3.8 deepsig`. - **Nice, but I'm mising XYZ...** Bakta is quite new and we're keen to constantly improve it and further expand its feature set. In case there's anything missing, please do not hesitate to open an issue and ask for it! - **Bakta is running too long without CPU load... why?** Bakta takes advantage of an SQLite DB which results in high storage IO loads. If this DB is stored on a remote / network volume, the lookup of IPS/PSC annotations might take a long time. In these cases, please, consider moving the DB to a local volume or hard drive. ## Issues and Feature Requests Bakta is new and like in every software, expect some bugs lurking around. So, if you run into any issues with Bakta, we'd be happy to hear about it. Therefore, please, execute bakta in debug mode (`--debug`) and do not hesitate to file an issue including as much information as possible: - a detailed description of the issue - command line output - log file (`<prefix>.log`) - result file (`<prefix>.json`) *if possible* - a reproducible example of the issue with an input file that you can share *if possible*


نیازمندی

مقدار نام
>=1.78 biopython
>=1.1.0 xopen
>=2.25.1 requests
==1.6.2 alive-progress


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl bakta-1.5.1:

    pip install bakta-1.5.1.whl


نصب پکیج tar.gz bakta-1.5.1:

    pip install bakta-1.5.1.tar.gz