معرفی شرکت ها


baklava-0.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

-
ویژگی مقدار
سیستم عامل -
نام فایل baklava-0.0.4
نام baklava
نسخه کتابخانه 0.0.4
نگهدارنده ['Intuit ML Platform']
ایمیل نگهدارنده ['baklava-maintainers@intuit.com']
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/intuit/baklava
آدرس اینترنتی https://pypi.org/project/baklava/
مجوز -
<p align="center"> <img src=".github/assets/images/baklava-logo.png"> </p> <h1 align="center">Baklava</h1> This is a package for building python based Machine Learning models into docker images, that can be deployed directly into AWS SageMaker. This is an extension to the standard python packaging utility `setuptools`. The official [python packaging guide](https://packaging.python.org/) explains the basics of building python distributions in detail. This extends the existing behavior of building a setuptools source distribution (`sdist`) by installing the built package artifact (`*.tar.gz`) into a Docker image. After the python distribution has been installed to the Docker image, it allows the user to configure the image for the purposes of model training and prediction. The name was chosen because [baklava](https://en.wikipedia.org/wiki/Baklava) consists of small pieces and layers, like we put technologies together in form of many layers to create Docker images. ## Installation Install [docker](https://www.docker.com/) and then install the package: ``` pip install baklava ``` ## Features Installing the `baklava` package automatically registers extensions to `setuptools`. New features are added to build python distributions into docker images. When installed, this package allows you to use two new **setuptools commands** (similar to `sdist` or `bdist_wheel`): * `train`: Builds a training docker image for your package. A training image (`python setup.py train`) executes a user-provided function just once in order to produce a model artifact. This image conforms to the AWS SageMaker training image API. * `predict`: Builds a prediction docker image for your package. A prediction image (`python setup.py predict`) hosts the user-provided function in a web application to be able to produce many decisions over time using a RESTful service conforming to the AWS SageMaker prediction API. * `execute`: Builds a batch execution docker image for your package. A batch execution image (`python setup.py execute`) executes a user-provided batch function for prediction on large amount of records. ### Production-grade Machine Learning API using Flask, Gunicorn, Nginx, and Docker ![Flask App](docs/flask.png) New **setup keywords** are also registered with setuptools (similar to `install_requires` or `entry_points`). These include: * `python_version`: Specify the version of python to build the docker image for * `dockerlines`: Add docker commands to your resulting `Dockerfile` This package also defines a [Python API](baklava/api.py) to perform the same actions as the setuptools extension. ## Usage ### Train To create a training image, your package must define a function that takes no arguments and returns nothing. It can be named anything as long as it is correctly referenced in the `setup.py` file. ```python def my_training_function(): """ A training function takes no arguments and returns no results """ pass ``` The `setup.py` must include a `baklava.train` entrypoint which points to this function. The entrypoint is the full module path to the defined python function. An example of a `setup.py` script with a valid training entrypoint would look like the following: ```python from setuptools import setup, find_packages setup( name='example', version='0.0.1', packages=find_packages(), include_package_data=True, entry_points={ 'baklava.train': [ 'my_entrypoint = example.main:my_training_function', ], } ) ``` With this `setup.py`, a training docker image can be built: ``` python setup.py train ``` See the [examples](examples/) for full sample projects. ### Predict To create a prediction image, your package must define a function that takes one argument and returns one value. It can be named anything as long as it is correctly referenced in the `setup.py` file. ```python def my_hosted_function(payload): """ A hosted function takes a dictionary input and returns a dictionary output. Arguments: payload (dict[str, object]): This is the payload was sent to the SageMaker server using a POST request to the `invocations` route. Returns: result (dict[str, object]): The output of the function is expected to be either a dictionary (like the function input) or a JSON string. """ return {} ``` The `setup.py` must include a `baklava.predict` entrypoint which points to this function. The entrypoint is the full module path to the defined python function. An example of a `setup.py` script with a valid prediction entrypoint would look like the following: ```python from setuptools import setup, find_packages setup( name='example', version='0.0.1', packages=find_packages(), include_package_data=True, entry_points={ 'baklava.predict': [ 'my_entrypoint = example.main:my_hosted_function', ] } ) ``` With this `setup.py`, a prediction docker image can be built: ``` python setup.py predict ``` See the [examples](examples/) for full sample projects. ### Predict Initialization There are often cases when python code needs to execute prior to running predictions. For example, it may take a long time to load a model artifact into memory. To add a prediction initializer, your package must define a function that takes no arguments and may return anything. It can be named anything as long as it is correctly referenced in the `setup.py` file. The function is responsible for it's own caching, but it is recommended to use caching function similar to `functools.lru_cache` to save the function results in memory. ```python import functools @functools.lru_cache() def my_init_function(): """ An initialization function takes no arguments and may return a result. Returns: data (object): Data necessary for prediction. Could be any type. """ return 1, 2, 3 ``` The `setup.py` must include a `baklava.initialize` entrypoint which points to this function. The entrypoint is the full module path to the defined python function. An example of a `setup.py` script with a valid prediction initialization entrypoint would look like the following: ```python from setuptools import setup, find_packages setup( name='example', version='0.0.1', packages=find_packages(), include_package_data=True, # Notice that we have an initializer AND a predict function entry_points={ 'baklava.predict': [ 'my_entrypoint = example.main:my_hosted_function', ] 'baklava.initialize': [ 'my_initializer = example.main:my_init_function', ] } ) ``` With this `setup.py`, a prediction docker image can be built that will initialize using the `my_init_function` initializer: ``` python setup.py predict ``` See the [examples](examples/) for full sample projects. ### Multiple Options A package may include all of the previous entrypoints in a single image if that package is responsible for both training and prediction. Like the previous examples, all that is required is to add a set of entrypoints to an existing `setup.py` script. In addition, we can also fix the `python_version` and add custom `dockerlines` to the final image ```python from setuptools import setup, find_packages setup( name='example', version='0.0.1', packages=find_packages(), include_package_data=True, # This will force the python version for the resulting image python_version='3.6.6', # This will run during the docker build stage dockerlines=[ 'RUN echo Hello, World!', 'RUN echo Hello, Sailor!', ], # The predict and train entrypoints create distinct images entry_points={ 'baklava.train': [ 'my_train_entrypoint = example.main:my_training_function', ], 'baklava.predict': [ 'my_predict_entrypoint = example.main:my_hosted_function', ] 'baklava.initialize': [ 'my_initializer = example.main:my_init_function', ] } ) ``` With this `setup.py`, both a prediction and a training docker image can be built: ``` python setup.py predict python setup.py train ``` # Community Engage with the Baklava + MLCTL community on Slack at: [https://mlctl.slack.com/](https://mlctl.slack.com/) # Contributing For information on how to contribute to `baklava`, please read through the [contributing guidelines](./.github/CONTRIBUTING.md).


نیازمندی

مقدار نام
>=2.0.0 docker
>=1.4.0 appdirs


نحوه نصب


نصب پکیج whl baklava-0.0.4:

    pip install baklava-0.0.4.whl


نصب پکیج tar.gz baklava-0.0.4:

    pip install baklava-0.0.4.tar.gz