معرفی شرکت ها


baggingrnet-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Library for Bagging of Deep Residual Neural Networks
ویژگی مقدار
سیستم عامل -
نام فایل baggingrnet-0.0.9
نام baggingrnet
نسخه کتابخانه 0.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Lianfa Li
ایمیل نویسنده lspatial@gmail.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/baggingrnet/
مجوز -
baggingrnet: Library for Bagging of Deep Residual Neural Networks ================ ### Introduction This package provides The python Library for Bagging of Deep Residual Neural Networks (baggingrnet). Current version just supports the KERAS package of deep learning and will extend to the others in the future. The following functionaity is provoded in this package: \* model multBagging: Major class to parallel bagging of autoencoder-based deep residual networks. You can setup its aruments for optimal effects. See the class and its member functions' help for details. resAutoencoder: Major class of the base model of autoencoder-based deep residual network. See the specifics for its details. ensPrediction: Major class to ensemble predictions and optional evaluation for independent test. \* util pmetrics: main metrics including rsquare and rmse etc. - data data: function to access two sample datas to test and demonstrate parallel training and predictions of multiple models by bagging. simData: function to simulate the dataset for a test. ### Installation of the package 1. You can directly install this package using the following command for the latest version: pip install baggingrnet 2. You can also clone the repository and then install: git clone --recursive https://github.com/lspatial/baggingrnet.git pip install ./setup.py install ### Modeling Framework The modeling is based on bagging of the encoding-decoding antoencoder based deep residual multilayer percepton (MLP). Residual connections were used from the encoding to decoding layers to improve the learning efficiency and use of bagging is to achieve the stable and improved ensemble predictions, with uncertainty metric (standard deviation). <img align="center" src="https://raw.githubusercontent.com/lspatial/baggingrnet/master/figs/framework.jpg" style="zoom:50%" hspace="2"/> The relevant paper will be published and will update here once published. ### Example 1: Regression of Simulated Data The dataset is simulated using the following formula: <img align="center" src="https://raw.githubusercontent.com/lspatial/baggingrnet/master/figs/simform.png" hspace="2"/> each covariate defined as: *x*<sub>1</sub> ∼ *U*(1, 100),*x*<sub>2</sub> ∼ *U*(0, 100),*x*<sub>3</sub> ∼ *U*(1, 10),*x*<sub>4</sub> ∼ *U*(1, 100),*x*<sub>5</sub> ∼ *U*(9, 100),*x*<sub>6</sub> ∼ *U*(1, 1009),*x*<sub>7</sub> ∼ *U*(5, 300),*x*<sub>8</sub> *U*(6 ∼ 200) This example is to illustrate how to use bagging class to train a model and compare the results by the models with and without use of residual connections in the models. ###### 1) Load the dataset: ``` python from baggingrnet.data import data sim_train=data('sim_train') sim_train['gindex']=np.array([i for i in range(sim_train.shape[0])]) ``` ``` r knitr::kable(py$sim_train[c(1:5),], format = "html") ``` <table> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> x1 </th> <th style="text-align:right;"> x2 </th> <th style="text-align:right;"> x3 </th> <th style="text-align:right;"> x4 </th> <th style="text-align:right;"> x5 </th> <th style="text-align:right;"> x6 </th> <th style="text-align:right;"> x7 </th> <th style="text-align:right;"> x8 </th> <th style="text-align:right;"> y </th> <th style="text-align:right;"> gindex </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> 9842 </td> <td style="text-align:right;"> 69.59893 </td> <td style="text-align:right;"> 6.368696 </td> <td style="text-align:right;"> 5.950720 </td> <td style="text-align:right;"> 97.97698 </td> <td style="text-align:right;"> 81.77670 </td> <td style="text-align:right;"> 38.12578 </td> <td style="text-align:right;"> 38.71023 </td> <td style="text-align:right;"> 124.90578 </td> <td style="text-align:right;"> 168.7697448 </td> <td style="text-align:right;"> 0 </td> </tr> <tr> <td style="text-align:left;"> 2513 </td> <td style="text-align:right;"> 88.83580 </td> <td style="text-align:right;"> 47.619385 </td> <td style="text-align:right;"> 8.107348 </td> <td style="text-align:right;"> 23.95389 </td> <td style="text-align:right;"> 41.00300 </td> <td style="text-align:right;"> 256.75319 </td> <td style="text-align:right;"> 203.75759 </td> <td style="text-align:right;"> 146.79040 </td> <td style="text-align:right;"> 184.8472212 </td> <td style="text-align:right;"> 1 </td> </tr> <tr> <td style="text-align:left;"> 9116 </td> <td style="text-align:right;"> 65.32664 </td> <td style="text-align:right;"> 49.473679 </td> <td style="text-align:right;"> 5.982418 </td> <td style="text-align:right;"> 75.99401 </td> <td style="text-align:right;"> 80.56275 </td> <td style="text-align:right;"> 849.48435 </td> <td style="text-align:right;"> 204.52137 </td> <td style="text-align:right;"> 161.61705 </td> <td style="text-align:right;"> -444.5390646 </td> <td style="text-align:right;"> 2 </td> </tr> <tr> <td style="text-align:left;"> 2673 </td> <td style="text-align:right;"> 21.72827 </td> <td style="text-align:right;"> 64.946680 </td> <td style="text-align:right;"> 2.592348 </td> <td style="text-align:right;"> 70.32067 </td> <td style="text-align:right;"> 42.27824 </td> <td style="text-align:right;"> 387.42060 </td> <td style="text-align:right;"> 13.15852 </td> <td style="text-align:right;"> 88.47877 </td> <td style="text-align:right;"> -166.3553631 </td> <td style="text-align:right;"> 3 </td> </tr> <tr> <td style="text-align:left;"> 5607 </td> <td style="text-align:right;"> 69.45317 </td> <td style="text-align:right;"> 18.811648 </td> <td style="text-align:right;"> 5.624373 </td> <td style="text-align:right;"> 39.81835 </td> <td style="text-align:right;"> 84.80446 </td> <td style="text-align:right;"> 333.43811 </td> <td style="text-align:right;"> 89.22591 </td> <td style="text-align:right;"> 77.25155 </td> <td style="text-align:right;"> -0.5405426 </td> <td style="text-align:right;"> 4 </td> </tr> </tbody> </table> ###### 2) Set bagging path, list of predictor names, get the bagging class instance and input data: ``` python # Load the major class for parallel bagging training from baggingrnet.model.bagging import multBagging feasList = ['x'+str(i) for i in range(1,9)] #List of the covariates used in training target='y' # Name of the target variable bagpath='/tmp/sim_bagging/res' # Path used to chkpath(bagpath) mbag=multBagging(bagpath) mbag.getInputSample(sim_train, feasList,None,'gindex',target) ``` ###### 3) Define the arguments of a model and append it to the list of modeling duties: ``` python name = str(0) # model name as unique identifier nodes = [32,16,8,4] # List of number of nodes for the encoding and coding layers, adjustable optionally; minibatch = 512 # Size for mini batch isresidual = True # Whether to use residual connections in the model nepoch = 200 #Number of epoches sampling_fea = False # Whether to bootstrap the predictors/features noutput = 1 # Number of the output node islog=False # Whether to make the log transformation # The following is to add the model's arguments to the list of duties. mbag.addTask(name,noutput,sampling_fea, nepoch, nodes, minibatch, isresidual,islog) ``` ###### 4) Initiate the training: ``` python mbag.startMProcess(1) ``` Here, just one core is used for one model. ###### 5) Prediction using the trained models and optional evaluation of the trained model: ``` python from baggingrnet.model.baggingpre import ensPrediction # Load the test dataset sim_test=data('sim_test') sim_test['gindex']=np.array([i for i in range(sim_test.shape[0])]) # Generate the unique id for merging the predicitons of multiple models # Setup the path and target variable prepath="/tmp/sim_bagging/res_pre" chkpath(prepath) #Load the prdiction class mbagpre=ensPrediction(bagpath,prepath) #Load the test data mbagpre.getInputSample(sim_test, feasList,'gindex') #Start to make predictions for multiple trained models. mbagpre.startMProcess(1) #Obtain the ensemble predictions from those of multiple models and optional evaluation of the models. mbagpre.aggPredict(isval=True,tfld='y') ``` The above five steps illustrate the process of loading data, training, testing, and predicting. To compare with the results of residual models, the following code is to get the results for the non-residual models. ``` python mbag.removeTask(name) bagpath='/tmp/sim_bagging/nores' chkpath(bagpath) mbag_nores=multBagging(bagpath) mbag_nores.getInputSample(sim_train, feasList,None,'gindex','y') isresidual = False # This is to set no use of residual connections in the models. mbag_nores.addTask(name,noutput,sampling_fea, nepoch, nodes, minibatch, isresidual,islog) mbag_nores.startMProcess(1) prepath="/tmp/sim_bagging/nores_pre" chkpath(prepath) mbagpre=ensPrediction(bagpath,prepath) mbagpre.getInputSample(sim_test, feasList,'gindex') mbagpre.startMProcess(1) mbagpre.aggPredict(isval=True,tfld='y') ``` The comparison of the training/learning curves for residual and non-residual models: ![](https://raw.githubusercontent.com/lspatial/baggingrnet/master/README_files/figure-markdown_github/unnamed-chunk-10-1.png) The comparison of the independent test for residual and non-residual models: performance (R2 and RMSE) ## [1] "non residual model r2: 0.78, rmse: 150.17" ## [1] "residual model r2: 0.91, rmse: 98.37" ## [1] "Residual model improved R2 by 12.48%, compared with non-residual model" ## [1] "Residual model decreased rmse by -51.8, compared with non-residual model" The scatter comparison of residual vs. non-residual models for the independent test: ![](https://raw.githubusercontent.com/lspatial/baggingrnet/master/README_files/figure-markdown_github/unnamed-chunk-12-1.png) ### Example 2: Spatiotemporal Estimation of PM<sub>2.5</sub> This dataset is the real dataset of the 2015 PM<sub>2.5</sub> and the relevant covariates for the Beijing-Tianjin-Tangshan area. Due to data security reason, it has been added with small Gaussian noise. <img align="center" src="https://raw.githubusercontent.com/lspatial/baggingrnet/master/figs/studyregion.png" style="zoom:65%" hspace="2"/> ###### 1) Load input data: Here the PM<sub>2.5</sub> dataset is used to test the proposed methods. ``` python from baggingrnet.data import data pm25_train=data('pm2.5_train') pm25_train['gindex']=np.array([i for i in range(pm25_train.shape[0])]) ``` <table> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:left;"> sites </th> <th style="text-align:left;"> site\_name </th> <th style="text-align:left;"> city </th> <th style="text-align:right;"> lon </th> <th style="text-align:right;"> lat </th> <th style="text-align:right;"> pm25\_davg </th> <th style="text-align:right;"> ele </th> <th style="text-align:right;"> prs </th> <th style="text-align:right;"> tem </th> <th style="text-align:right;"> rhu </th> <th style="text-align:right;"> win </th> <th style="text-align:right;"> aod </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> 23123 </td> <td style="text-align:left;"> 1010A </td> <td style="text-align:left;"> 昌平镇 </td> <td style="text-align:left;"> 北京 </td> <td style="text-align:right;"> 116.2300 </td> <td style="text-align:right;"> 40.1952 </td> <td style="text-align:right;"> 6.80000 </td> <td style="text-align:right;"> 57.0 </td> <td style="text-align:right;"> 1007.709 </td> <td style="text-align:right;"> 20.0859852 </td> <td style="text-align:right;"> 0.7609952 </td> <td style="text-align:right;"> 17.39427 </td> <td style="text-align:right;"> 0.2877372 </td> </tr> <tr> <td style="text-align:left;"> 1339 </td> <td style="text-align:left;"> 1014A </td> <td style="text-align:left;"> 南口路 </td> <td style="text-align:left;"> 天津 </td> <td style="text-align:right;"> 117.1930 </td> <td style="text-align:right;"> 39.1730 </td> <td style="text-align:right;"> 84.59091 </td> <td style="text-align:right;"> 8.5 </td> <td style="text-align:right;"> 1021.859 </td> <td style="text-align:right;"> -0.2894622 </td> <td style="text-align:right;"> 0.6565141 </td> <td style="text-align:right;"> 40.61296 </td> <td style="text-align:right;"> 0.2245625 </td> </tr> <tr> <td style="text-align:left;"> 11843 </td> <td style="text-align:left;"> 1062A </td> <td style="text-align:left;"> 铁路 </td> <td style="text-align:left;"> 承德 </td> <td style="text-align:right;"> 117.9664 </td> <td style="text-align:right;"> 40.9161 </td> <td style="text-align:right;"> 21.27273 </td> <td style="text-align:right;"> 362.0 </td> <td style="text-align:right;"> 969.876 </td> <td style="text-align:right;"> 15.3092365 </td> <td style="text-align:right;"> 0.5288071 </td> <td style="text-align:right;"> 16.61683 </td> <td style="text-align:right;"> 0.4272831 </td> </tr> <tr> <td style="text-align:left;"> 9373 </td> <td style="text-align:left;"> 榆垡 </td> <td style="text-align:left;"> 京南榆垡,京南区域点 </td> <td style="text-align:left;"> 北京 </td> <td style="text-align:right;"> 116.3000 </td> <td style="text-align:right;"> 39.5200 </td> <td style="text-align:right;"> 12.08696 </td> <td style="text-align:right;"> 18.0 </td> <td style="text-align:right;"> 1013.116 </td> <td style="text-align:right;"> 14.0085974 </td> <td style="text-align:right;"> 0.8100768 </td> <td style="text-align:right;"> 39.46079 </td> <td style="text-align:right;"> 0.5075859 </td> </tr> <tr> <td style="text-align:left;"> 19596 </td> <td style="text-align:left;"> 1069A </td> <td style="text-align:left;"> 环境监测监理中心 </td> <td style="text-align:left;"> 廊坊 </td> <td style="text-align:right;"> 116.7150 </td> <td style="text-align:right;"> 39.5571 </td> <td style="text-align:right;"> 64.20833 </td> <td style="text-align:right;"> 35.0 </td> <td style="text-align:right;"> 1005.249 </td> <td style="text-align:right;"> 24.4960499 </td> <td style="text-align:right;"> 0.8604047 </td> <td style="text-align:right;"> 14.01048 </td> <td style="text-align:right;"> 1.5149391 </td> </tr> </tbody> </table> ###### 2) Set bagging path, list of predictor names, get the bagging class instance and input data: ``` python from baggingrnet.model.bagging import multBagging import random as r feasList = ['lat', 'lon', 'ele', 'prs', 'tem', 'rhu', 'win', 'pblh_re', 'pre_re', 'o3_re', 'aod', 'merra2_re', 'haod', 'shaod', 'jd','lat2','lon2','latlon'] target='pm25_avg_log' bagpath='/tmp/baggingpm25_2/res' chkpath(bagpath) mbag=multBagging(bagpath) ``` ## initializing ... ``` python mbag.getInputSample(pm25_train, feasList,None,'gindex',target) ``` ## (29475, 31) ###### 3) Define the arguments of multiple models (here 100 models) and append them to the list of modeling duties: ``` python import random as r for i in range(1,81): name = str(i) nodes = [128 + r.randint(-5,5),128+ r.randint(-5,5),96,64,32,12] minibatch = 2560+r.randint(-5,5) isresidual = False nepoch = 120 sampling_fea = False noutput = 1 islog=True mbag.addTask(name,noutput,sampling_fea, nepoch, nodes, minibatch, isresidual,islog) ``` ###### 4) Initiate the training: Initiate the parallel programs using 10 cores ``` python mbag.startMProcess(10) ``` ###### 5) Prediction using the trained models and optional evaluation of the trained model: ``` python from baggingrnet.model.baggingpre import ensPrediction prepath="/tmp/baggingpm25_2p/res" chkpath(prepath) mbagpre=ensPrediction(bagpath,prepath) mbagpre.getInputSample(pm25_test, feasList,'gindex') mbagpre.startMProcess(10) mbagpre.aggPredict(isval=True,tfld='pm25_davg') ``` Finally, the following results were obtaned. The results are shown as the following: ###### 1) Typical learning curves of non-residual vs. residual models are shown as the following: ![](https://raw.githubusercontent.com/lspatial/baggingrnet/master/README_files/figure-markdown_github/unnamed-chunk-19-1.png) ###### 2) Mean performance (R2 and RMSE) of the predictions of multiple non-residual vs residual models for the independent dataset : ![](https://raw.githubusercontent.com/lspatial/baggingrnet/master/README_files/figure-markdown_github/unnamed-chunk-20-1.png) ###### 3) Performance (R2 and RMSE) of the ensembled predictions based on multiple models for the independent dataset: ## [1] "non residual model r2: 0.88, rmse: 23.55" ## [1] "residual model r2: 0.91, rmse: 20.35" ## [1] "Residual model improved R2 by 2.97%, compared with non-residual model" ## [1] "Residual model decreased rmse by -3.2, compared with non-residual model" ###### 4) Scatter plots for the ensemble predictions of non-residual vs residual models: ![](https://raw.githubusercontent.com/lspatial/baggingrnet/master/README_files/figure-markdown_github/unnamed-chunk-22-1.png) ###### 5) Comparison of ensemble predictions vs. predictions of single models: Statistics of the performance for the predictions of multiple models and ensemble predictions are made. The following shows R<sup>2</sup> and RMSE, barplots and scatter plots. Performance digits: ## [1] "Ensemble predictions: R2=0.91, RMSE=20.35" ## [1] "Mean performance of predictions of multiple single models: R2=0.86, RMSE=26.07" ## [1] "Ensemble predictions averagely improved the single predictions by 6% for R2, and reduced -5.72ug/m3 for RMSE" The boxplot shows considerable improvement by bagging (6% in R<sup>2</sup> and -5.72 *μ*g/m<sup>3</sup>), in comparison with single models. ![](https://raw.githubusercontent.com/lspatial/baggingrnet/master/README_files/figure-markdown_github/unnamed-chunk-24-1.png) The following shows the scatter plots of observed PM<sub>2.5</sub> vs. ensemble predictions/residuals: ![](https://raw.githubusercontent.com/lspatial/baggingrnet/master/README_files/figure-markdown_github/unnamed-chunk-25-1.png) ### Contact For this library and its relevant complete applications, welcome to contact Dr. Lianfa Li. Email: <lspatial@gmail.com> or <lilf@lreis.ac.cn>


نحوه نصب


نصب پکیج whl baggingrnet-0.0.9:

    pip install baggingrnet-0.0.9.whl


نصب پکیج tar.gz baggingrnet-0.0.9:

    pip install baggingrnet-0.0.9.tar.gz