معرفی شرکت ها


baconian-0.2.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

model-based reinforcement learning toolbox
ویژگی مقدار
سیستم عامل -
نام فایل baconian-0.2.6
نام baconian
نسخه کتابخانه 0.2.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Linsen Dong
ایمیل نویسنده linsen001@e.ntu.edu.sg
آدرس صفحه اصلی https://github.com/cap-ntu/baconian-project
آدرس اینترنتی https://pypi.org/project/baconian/
مجوز MIT License
# Baconian: Boosting model-based reinforcement learning [![Build Status](https://travis-ci.com/cap-ntu/baconian-project.svg?branch=master)](https://travis-ci.com/cap-ntu/baconian-project) [![Documentation Status](https://readthedocs.org/projects/baconian-public/badge/?version=latest)](https://baconian-public.readthedocs.io/en/latest/?badge=latest) ![GitHub issues](https://img.shields.io/github/issues/cap-ntu/baconian-project) [![Codacy Badge](https://api.codacy.com/project/badge/Grade/ea83a8fef57b4d8f8c9c2590337c8bc1)](https://www.codacy.com/app/Lukeeeeee/baconian?utm_source=github.com&utm_medium=referral&utm_content=Lukeeeeee/baconian&utm_campaign=Badge_Grade) [![codecov](https://codecov.io/gh/Lukeeeeee/baconian-project/branch/master/graph/badge.svg)](https://codecov.io/gh/Lukeeeeee/baconian-project) ![GitHub commit activity](https://img.shields.io/github/commit-activity/m/lukeeeeee/baconian-project.svg) ![GitHub](https://img.shields.io/github/license/Lukeeeeee/baconian-project.svg) Baconian [beˈkonin] is a toolbox for model-based reinforcement learning with user-friendly experiment setting-up, logging and visualization modules developed by [CAP](http://cap.scse.ntu.edu.sg/). We aim to develop a flexible, re-usable and modularized framework that can allow the users to easily set-up their model-based RL experiments by reusing modules we provide. ### Installation You can easily install by (with python 3.5/3.6/3.7, Ubuntu 16.04/18.04): ```bash # install tensorflow with/without GPU based on your machine pip install tensorflow-gpu==1.15.2 # or pip install tensorflow==1.15.2 pip install baconian ``` For more advance usage like using Mujoco environment, please refer to our documentation page. ### Release news: - 2020.04.29 v0.2.2 Fix some memory issues in SampleData module, and simplify some APIs. - 2020.02.10 We are including external reward & terminal function of Gym/mujoco tasks with well-written documents. - 2020.01.30 Update some dependent packages versions, and release some preliminary benchmark results with hyper-parameters. For previous news, please go [here](./old_news.md) ### Documentation We support python 3.5, 3.6, and 3.7 with Ubuntu 16.04 or 18.04. Documentation is available at http://baconian-public.readthedocs.io/ ### Algorithms Reference: #### Model-based: #### 1. Dyna Sutton, Richard S. "Dyna, an integrated architecture for learning, planning, and reacting." ACM Sigart Bulletin 2.4 (1991): 160-163. #### 2. LQR Abbeel, P. "Optimal Control for Linear Dynamical Systems and Quadratic Cost (‘LQR’)." (2012). #### 3. iLQR Abbeel, P. "Optimal Control for Linear Dynamical Systems and Quadratic Cost (‘LQR’)." (2012). #### 4. MPC Garcia, Carlos E., David M. Prett, and Manfred Morari. "Model predictive control: theory and practice—a survey." Automatica 25.3 (1989): 335-348. #### 5. Model-ensemble Kurutach, Thanard, et al. "Model-ensemble trust-region policy optimization." arXiv preprint arXiv:1802.10592 (2018). #### Model-free #### 1. DQN Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013). #### 2. PPO Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017). #### 3. DDPG Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv preprint arXiv:1509.02971 (2015). ### Algorithms in Progress #### 1. Random Shooting Rao, Anil V. "A survey of numerical methods for optimal control." Advances in the Astronautical Sciences 135.1 (2009): 497-528. #### 2. MB-MF Nagabandi, Anusha, et al. "Neural network dynamics for model-based deep reinforcement learning with model-free fine-tuning." 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018. #### 3. GPS Levine, Sergey, et al. "End-to-end training of deep visuomotor policies." The Journal of Machine Learning Research 17.1 (2016): 1334-1373. ### Acknowledgement Thanks to the following open-source projects: - garage: https://github.com/rlworkgroup/garage - rllab: https://github.com/rll/rllab - baselines: https://github.com/openai/baselines - gym: https://github.com/openai/gym - trpo: https://github.com/pat-coady/trpo ### Citing Baconian If you find Baconian is useful for your research, please consider cite our demo paper here: ``` @article{ linsen2019baconian, title={Baconian: A Unified Opensource Framework for Model-Based Reinforcement Learning}, author={Linsen, Dong and Guanyu, Gao and Yuanlong, Li and Yonggang, Wen}, journal={arXiv preprint arXiv:1904.10762}, year={2019} } ``` ### Report an issue If you find any bugs on issues, please open an issue or send an email to me (linsen001@e.ntu.edu.sg) with detailed information. I appreciate your help!


نیازمندی

مقدار نام
>=20.0 pip
>=2.7.4 pybullet
>=0.7.0 absl-py
>=0.7.1 astor
>=1.12.2 cffi
>=3.0.4 chardet
>=0.29.6 Cython
>=0.17.1 future
>=0.2.2 gast
>=1.7.1 glfw
>=1.4.0 GPUtil
>=1.19.0 grpcio
==0.12.0 gym
>=2.9.0 h5py
>=3.13.0 json-tricks
>=0.12.2 lockfile
>=3.0.1 Markdown
>=1.16.2 numpy
>=1.9 overrides
>=5.1.3 pbr
>=5.4.1 Pillow
>=2.19 pycparser
>=1.3.2 pyglet
>=3.1.0 PyOpenGL
>=2.21.0 requests
>=1.2.1 scipy
>=1.12.0 six
>=41.0.0 setuptools
==0.7.0 tensorflow-probability
>=0.6.9 transitions
>=2.1.0 typeguard
>=1.24.2 urllib3
>=0.15.3 Werkzeug
>=4.5.2 coverage
>=2.0.15 codecov
>=0.24.2 pandas
>=1.2 autograd
==1.4.1 gpflow
>=3.0.3 matplotlib
>=0.9.0 seaborn
==1.0.48 roboschool
>=4.1.0.25 opencv-python
>=0.21.1 scikit-learn
>=0.1.14 atari-py


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl baconian-0.2.6:

    pip install baconian-0.2.6.whl


نصب پکیج tar.gz baconian-0.2.6:

    pip install baconian-0.2.6.tar.gz