معرفی شرکت ها


backprop-0.1.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Backprop
ویژگی مقدار
سیستم عامل -
نام فایل backprop-0.1.3
نام backprop
نسخه کتابخانه 0.1.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Backprop
ایمیل نویسنده hello@backprop.co
آدرس صفحه اصلی https://github.com/backprop-ai/backprop
آدرس اینترنتی https://pypi.org/project/backprop/
مجوز -
<h1 align="center"> <a href="https://backprop.co"> <img src=".github/header.png" width="300" alt="Backprop"/> </a> </h1> <p align="center"> <a href="https://pypi.org/project/backprop/"><img src="https://img.shields.io/pypi/v/backprop"/></a> <img src="https://img.shields.io/pypi/pyversions/backprop"/> <a href="https://www.apache.org/licenses/LICENSE-2.0"><img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg"/></a> </p> <p align="center"> Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models. </p> <p align="center"> <img src=".github/example.png" width="600"/> </p> Solve a variety of tasks with pre-trained models or finetune them in one line for your own tasks. Out of the box tasks you can solve with Backprop: - Conversational question answering in English - Text Classification in 100+ languages - Image Classification - Text Vectorisation in 50+ languages - Image Vectorisation - Summarisation in English - Emotion detection in English - Text Generation For more specific use cases, you can adapt a task with little data and a single line of code via finetuning. | ⚡ [Getting started](#getting-started) | Installation, few minute introduction | | :---------------------------------------------------- | :-------------------------------------------------------- | | 💡 [Examples](#examples) | Finetuning and usage examples | | 📙 [Docs](https://backprop.readthedocs.io/en/latest/) | In-depth documentation about task inference and finetuning | | ⚙️ [Models](https://backprop.co/hub) | Overview of available models | ## Getting started ### Installation Install Backprop via PyPi: ```bash pip install backprop ``` ### Basic task inference Tasks act as interfaces that let you easily use a variety of supported models. ```python import backprop context = "Take a look at the examples folder to see use cases!" qa = backprop.QA() # Start building! answer = qa("Where can I see what to build?", context) print(answer) # Prints "the examples folder" ``` You can run all tasks and models on your own machine, or in production with our inference [API](https://backprop.co), simply by specifying your `api_key`. See how to use [all available tasks](https://backprop.readthedocs.io/en/latest/Tasks.html). ### Basic finetuning and uploading Each task implements finetuning that lets you adapt a model for your specific use case in a single line of code. A finetuned model is easy to upload to production, letting you focus on building great applications. ```python from backprop.models import T5 from backprop import TextGeneration tg = TextGeneration(T5) # Any text works as training data inp = ["I really liked the service I received!", "Meh, it was not impressive."] out = ["positive", "negative"] # Finetune with a single line of code tg.finetune({"input_text": inp, "output_text": out}) # Use your trained model prediction = tg("I enjoyed it!") print(prediction) # Prints "positive" # Upload to Backprop for production ready inference # Describe your model name = "t5-sentiment" description = "Predicts positive and negative sentiment" tg.upload(name=name, description=description, api_key="abc") ``` See [finetuning for other tasks](https://backprop.readthedocs.io/en/latest/Finetuning.html). ## Why Backprop? 1. No experience needed - Entrance to practical AI should be simple - Get state-of-the-art performance in your task without being an expert 2. Data is a bottleneck - Solve real world tasks without any data - With transfer learning, even a small amount of data can adapt a task to your niche requirements 3. There are an overwhelming amount of models - We offer a curated selection of the best open-source models and make them simple to use - A few general models can accomplish more with less optimisation 4. Deploying models cost effectively is hard work - If our models suit your use case, no deployment is needed: just call our API - Adapt and deploy your own model with just a few lines of code - Our API scales, is always available, and you only pay for usage ## Examples - Solve any text based task with Finetuning ([Github](https://github.com/backprop-ai/backprop/blob/main/examples/Finetuning_GettingStarted.ipynb), [Colab](https://colab.research.google.com/github/backprop-ai/backprop/blob/main/examples/Finetuning_GettingStarted.ipynb)) - Search for images using text ([Github](https://github.com/backprop-ai/backprop/blob/main/examples/ImageVectorisation.ipynb)) - Finding answers from text ([Github](https://github.com/backprop-ai/backprop/blob/main/examples/Q%26A.ipynb)) - [More finetuning and task examples](https://github.com/backprop-ai/backprop/tree/main/examples) ## Documentation Check out our [docs](https://backprop.readthedocs.io/en/latest/) for in-depth task inference and finetuning. ## Model Hub Curated list of [state-of-the-art models](https://backprop.co/hub). ## Demos Zero-shot image classification with [CLIP](https://clip.backprop.co). ## Credits Backprop relies on many great libraries to work, most notably: * [PyTorch](https://github.com/pytorch/pytorch) * [PyTorch Lightning](https://github.com/PyTorchLightning/pytorch-lightning) * [Transformers](https://github.com/huggingface/transformers) * [Sentence Transformers](https://github.com/UKPLab/sentence-transformers) * [EfficientNet PyTorch](https://github.com/lukemelas/EfficientNet-PyTorch) * [CLIP](https://github.com/openai/CLIP) ## Feedback Found a bug or have ideas for new tasks and models? Open an [issue](https://github.com/backprop-ai/backprop/issues).


نیازمندی

مقدار نام
- dill
- efficientnet-pytorch
- ftfy
<1.3.0,>=1.2.0 pytorch-lightning
>=0.4.1.2 sentence-transformers
<1.8.0 torch
<0.9.0 torchtext
<0.9.0 torchvision
<4.5.0,>=4.3.2 transformers


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl backprop-0.1.3:

    pip install backprop-0.1.3.whl


نصب پکیج tar.gz backprop-0.1.3:

    pip install backprop-0.1.3.tar.gz