معرفی شرکت ها


backend.ai-krunner-static-gnu-4.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Backend.AI Kernel Runner based on GNU libc
ویژگی مقدار
سیستم عامل -
نام فایل backend.ai-krunner-static-gnu-4.1.0
نام backend.ai-krunner-static-gnu
نسخه کتابخانه 4.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Lablup Inc.
ایمیل نویسنده devops@lablup.com
آدرس صفحه اصلی https://backend.ai
آدرس اینترنتی https://pypi.org/project/backend.ai-krunner-static-gnu/
مجوز MIT
# backend.ai-krunner-static-gnu Backend.AI Kernel Runner Package for glibc-based Kernels This package contains a statically built Python distribution and 3rd-party libraries required to run [our krunner module](https://github.com/lablup/backend.ai/tree/main/src/ai/backend/kernel) inside containers whose images are provided by users. The krunner wheel itself can be installed into any Python environments (the content of this plugin package is agnostic to platforms and architectures as it's a mere declaration of the plugin interface), but we still apply the binary wheel platform tags so that setuptools could distinguish the target CPU architecture as follows: | Where is Backend.AI running? | What is the user container's base image? | The krunner wheel used | |------------------------------|------------------------------------------|------------------------| | manylinux (x86-64) | manylinux (x86-64) | `backend.ai_krunner_static_gnu-X.X.X-py3-none-manylinux2014_x86_64.musllinux_1_1_x86_64.macosx_11_0_x86_64.whl` | | manylinux (x86-64) | musllinux (x86-64) | `backend.ai_krunner_alpine-X.X.X-py3-none-manylinux2014_x86_64.musllinux_1_1_x86_64.macosx_11_0_x86_64.whl` | | manylinux (aarch64) | manylinux (aarch64) | `backend.ai_krunner_static_gnu-X.X.X-py3-none-manylinux2014_aarch64.musllinux_1_1_aarch64.macosx_11_0_arm64.whl` | | manylinux (aarch64) | musllinux (aarch64) | `backend.ai_krunner_alpine-X.X.X-py3-none-manylinux2014_aarch64.musllinux_1_1_aarch64.macosx_11_0_arm64.whl` | | musllinux (x86-64) | manylinux (x86-64) | `backend.ai_krunner_static_gnu-X.X.X-py3-none-manylinux2014_x86_64.musllinux_1_1_x86_64.macosx_11_0_x86_64.whl` | | musllinux (x86-64) | musllinux (x86-64) | `backend.ai_krunner_alpine-X.X.X-py3-none-manylinux2014_x86_64.musllinux_1_1_x86_64.macosx_11_0_x86_64.whl` | | musllinux (aarch64) | manylinux (aarch64) | `backend.ai_krunner_static_gnu-X.X.X-py3-none-manylinux2014_aarch64.musllinux_1_1_aarch64.macosx_11_0_arm64.whl` | | musllinux (aarch64) | musllinux (aarch64) | `backend.ai_krunner_alpine-X.X.X-py3-none-manylinux2014_aarch64.musllinux_1_1_aarch64.macosx_11_0_arm64.whl` | | macOS (x86-64) | manylinux (x86-64) | `backend.ai_krunner_static_gnu-X.X.X-py3-none-manylinux2014_x86_64.musllinux_1_1_x86_64.macosx_11_0_x86_64.whl` | | macOS (x86-64) | musllinux (x86-64) | `backend.ai_krunner_alpine-X.X.X-py3-none-manylinux2014_x86_64.musllinux_1_1_x86_64.macosx_11_0_x86_64.whl` | | macOS (aarch64) | manylinux (aarch64) | `backend.ai_krunner_static_gnu-X.X.X-py3-none-manylinux2014_aarch64.musllinux_1_1_aarch64.macosx_11_0_arm64.whl` | | macOS (aarch64) | musllinux (aarch64) | `backend.ai_krunner_alpine-X.X.X-py3-none-manylinux2014_aarch64.musllinux_1_1_aarch64.macosx_11_0_arm64.whl` | We named the krunner package based on musl 1.2 as "alpine" because practically Alpine linux is the only distribution which actively uses musl and it is currently not possible to build static CPython which can import 3rd-party dynamic modules on top of the musl ecosystem. ## Notice about source distribution This package is to distribute prebuilt binaries, so the source distribution does not have prebuilt binaries and does not work as intended. Just refer this repository on how we build stuffs. ## How to read below * `{distro}` is a string like `static-gnu`, `alpine`, etc. depending on which repository you are in. * `{distro_}` is a string same to `{distro}` but with hyphens replaced with underscores for Python package names and paths. (e.g., `static_gnu`, `alpine`) ## Development ```console $ git clone https://github.com/lablup/backend.ai-krunner-{distro} krunner-{distro} $ cd krunner-{distro} $ pyenv virtualenv 3.11.2 venv-krunner # you may share the same venv with other krunner projects $ pyenv local venv-krunner $ pip install -U pip setuptools $ pip install -U click -e . ``` ## How to update 1. Modify Dockerfile and/or other contents. - To update the Python version, update `src/ai/backend/krunner/{distro_}/krunner-python.{distro}.txt` and the dockerfiles (both python and wheels) accordingly, including the `PYTHON_VERSION` environment variable and the download URL of the statically built Python distribution. 2. Increment *the volume version number* specified as a label `ai.backend.krunner.version` in `src/ai/backend/krunner/{distro_}/krunner-env.{distro}.dockerfile` 3. Run `scripts/build.py`. 4. Repeat the above steps for each distro version. (For static builds, there is only one.) 5. Increment *the package version number* in `src/ai/backend/krunner/{distro_}/__init__.py` 6. `rm -r dist/* build/*` (skip if these directories do not exist and or are empty) 7. Commit. 8. Create a signed annotated tag and push the tag to let GitHub Action build and publish wheels. Note that `src/ai/backend/krunner/{distro_}/krunner-version.{distro}.txt` files are overwritten by the build script from the label. WARNING: We should choose [`x86_64_v2` binaries from the indygreg repository](https://gregoryszorc.com/docs/python-build-standalone/main/running.html) when updating the Python runtime version for CPU compatibility with some of our test setups and customer sites. ## Making a minimal glibc-based image compatibile with this krunner package [Use CentOS 7 or later and install this list of packages.](https://github.com/lablup/backend.ai-krunner-static-gnu/blob/master/compat-test.Dockerfile) Also [refer the test script](https://github.com/lablup/backend.ai-krunner-static-gnu/blob/main/scripts/test.sh). ## Build custom ttyd binary **⚠️ Warning: Use a x86-64 host to build ttyd, because:** - ttyd uses `musl` as their C stdlib, not `glibc`. - The `musl` toochain used by the build script is x86_64 binaries. `libwebsockets>=4.0.0` features auto ping/pong with 5 min default interval. (https://github.com/warmcat/libwebsockets#connection-validity-tracking) And, `ws_ping_pong_interval` of ttyd is not effective in `libwebsockets>=4.0.0`. This seems to be the reason why `ttyd>=1.6.1` does not set `ws_ping_pong_interval` for `libwebsockets>=4.0.0`. (https://github.com/tsl0922/ttyd/blob/master/src/server.c#L456) To fix this issue, we modify and build the latest version of `libwebsockets` used by the ttyd build script manually. ```console # Prepare Ubuntu environment (possibly, through container) and dependencies. sudo apt-get update sudo apt-get install -y autoconf automake build-essential cmake curl file libtool # Download ttyd source. git clone https://github.com/tsl0922/ttyd.git cd ttyd ``` Now let's modify `./scripts/cross-build.sh`. Add these two lines under `pushd "${BUILD_DIR}/libwebsockets-${LIBWEBSOCKETS_VERSION}"`: ```sh sed -i 's/context->default_retry.secs_since_valid_ping = 300/context->default_retry.secs_since_valid_ping = 20/g' lib/core/context.c sed -i 's/context->default_retry.secs_since_valid_hangup = 310/context->default_retry.secs_since_valid_hangup = 30/g' lib/core/context.c ``` Finally, build the `ttyd` binary. ```console # Run build script. ./scripts/cross-build.sh # Check ttyd binary version. ./build/ttyd --version ```


نیازمندی

مقدار نام
>=0.34.2 wheel
~=3.0 twine
~=6.2.1 pytest
>=3.7.9 flake8
- codecov


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl backend.ai-krunner-static-gnu-4.1.0:

    pip install backend.ai-krunner-static-gnu-4.1.0.whl


نصب پکیج tar.gz backend.ai-krunner-static-gnu-4.1.0:

    pip install backend.ai-krunner-static-gnu-4.1.0.tar.gz