معرفی شرکت ها


bacdiving-1.2.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Bacdiving accesses the Bacterial Diversity Metadatabase BacDive and provides various visualization options.
ویژگی مقدار
سیستم عامل -
نام فایل bacdiving-1.2.7
نام bacdiving
نسخه کتابخانه 1.2.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Mahima Arunkumar <M.Arunkumar@campus.lmu.de>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/bacdiving/
مجوز -
# Bacdiving Bacdiving accesses and retrieves information from the world's largest database for standardized bacterial phenotypic information: BacDive. Additionally, Bacdiving provides several options to visualize this information. Before using Bacdiving please register (for free) on [BacDive](https://api.bacdive.dsmz.de/). Using your BacDive credentials you can dive into Bacdiving. In general, Bacdiving can deal with two types of input data: a taxonomy table (e.g. as extracted from a phyloseq-object) or an input file (.csv, .txt, .tsv) with one query-type per row. Possible BacDive query types include: BacDive id, taxonomy (as in species name), 16S sequencing accession id (e.g. SILVA id), culture collection accession id or genome sequence accession id. Make sure that the input file should is consistant with only contain one (!) query type for all of its rows. Here is a minimal example on how to use Bacdiving, please refer to the full [documentation](https://bacdiving.readthedocs.io/en/latest/) for more details: ``` from bacdiving import bacdive_caller as bc from bacdiving import treeplots_maker as tm from bacdiving import visualizations_maker as vm ### Retrieve and access information stored on BacDive ### # Run for a single input from text file for SILVA id queries resulting_list_with_all_res_dfs = bc.bacdive_call(bacdive_id="<your ID>", bacdive_password="<your password>", inputs_list=["./SILVA_ids.txt input_via_file search_by_16S_seq_accession"], sample_names=["SILVA"], output_dir="./") resulting_df = resulting_list_with_all_res_dfs[0] # Run for a single input from text file for taxonomy queries resulting_list_with_all_res_dfs = bc.bacdive_call(inputs_list=["./taxonomy_ids.txt input_via_file search_by_taxonomy"], sample_names=["taxonomy"], output_dir="./results/") # if credentials are not given via parameters, you will get prompted resulting_df = resulting_list_with_all_res_dfs[0] # Run for a single input from text file for BacDive id queries resulting_list_with_all_res_dfs = bc.bacdive_call(bacdive_id="<your ID>", bacdive_password="<your password>", inputs_list=["./bacdive_ids.txt input_via_file search_by_id"], sample_names=["bacdive"], output_dir="./") resulting_df = resulting_list_with_all_res_dfs[0] # Run for a single input from text file for culture collection queries resulting_list_with_all_res_dfs = bc.bacdive_call(bacdive_id="<your ID>", bacdive_password="<your password>", inputs_list=["./culture_col_ids.txt input_via_file search_by_culture_collection"], sample_names=["culturecol"], output_dir="./") resulting_df = resulting_list_with_all_res_dfs[0] # Run for a single input from text file for genome accession queries resulting_list_with_all_res_dfs = bc.bacdive_call(bacdive_id="<your ID>", bacdive_password="<your password>", inputs_list=["./genome_ids.txt input_via_file search_by_genome_accession"], sample_names=["genomecol"], output_dir="./") resulting_df = resulting_list_with_all_res_dfs[0] # Run for single taxonomy table input (e.g. as extracted from phyloseq-object) resulting_list_with_all_res_dfs = bc.bacdive_call(bacdive_id="<your ID>", bacdive_password="<your password>", inputs_list=["./taxtab.tsv taxtable_input"], sample_names=["taxtab"], print_res_df_ToFile = True, print_access_stats = True, print_flattened_file=True, columns_of_interest=["Physiology and metabolism.oxygen tolerance.oxygen tolerance", "Culture and growth conditions.culture temp.temperature", "Isolation, sampling and environmental information.isolation.origin.country","Morphology.cell morphology.motility"], output_dir="./") resulting_df = resulting_list_with_all_res_dfs[0] # Run for multiple inputs (of possibly different input types) resulting_list_with_all_res_dfs = bc.bacdive_call(bacdive_id="<your ID>", bacdive_password="<your password>", inputs_list=["./SILVA_ids.txt input_via_file search_by_16S_seq_accession", "./taxonomy_ids.txt input_via_file search_by_taxonomy", "./taxtab1.tsv taxtable_input", "./taxtab2.tsv taxtable_input"], sample_names=["sample1", "sample2", "sample3", "sample4"], print_flattened_file=True, columns_of_interest=["Physiology and metabolism.oxygen tolerance.oxygen tolerance", "Culture and growth conditions.culture temp.temperature"]) resulting_df = resulting_list_with_all_res_dfs[1] # pick your dataframe of interest from this list ``` ``` ### Some possible visualizations ### #Tree plots tm.overview_treeplot(resulting_df, label_name1="Temperature", label_name2="Oxygen tolerance", saveToFile=True, output_dir="./") tm.circular_treeplot(resulting_df, output_dir="./") #Relative abundance plot vm.stacked_barplot_relative_abundance(resulting_list_with_all_res_dfs, sample_names=["Silva_input", "Taxtab_input"], plot_column="Name and taxonomic classification.genus", title="Relative abundance", saveToFile = True, output_dir="./") #Fatty acid profile plot vm.fatty_acid_profile(resulting_df, species = "Achromobacter denitrificans", figsize=[20, 15], saveToFile=True, output_dir="./") #Pie plot vm.pieplot_maker(resulting_df,"Morphology.cell morphology.motility", title="Motility for all species", saveToFile = True, output_dir="./") #World map vm.worldmap_maker(resulting_df) #Frequency plot vm.freqplot_maker(resulting_df, "Isolation, sampling and environmental information.isolation.country", title="Countries of origin", ylabel_name = "All countries", saveToFile=True, output_dir="./") #Species list for ALL species in resulting_df, not for a subset species_list = resulting_df["Name and taxonomic classification.species"].tolist() #Barplot vm.barplot_maker(resulting_df, "Sequence information.GC content.GC-content", "GC-content", "GC-content", figsize=[40,10], species_list=species_list, saveToFile=True, output_dir="./") #Boxplot value_dict = vm.access_list_df_objects(resulting_df, "Culture and growth conditions.culture temp", "temperature", temp= 1, species_list=species_list) vm.boxplot_maker(value_dict, title= "Optimal temperature for species", xlabel_name= "species", figsize=[20, 10], ylabel_name="Opt. Culture Temp. $C^{o}$", saveToFile=True, output_dir="./") ```


نیازمندی

مقدار نام
>=2.4.1 alive-progress
>=2.8.0 anytree
>=0.2 bacdive
>=2.4.3 bokeh
>=3.1.2 ete3
==3.6.0 matplotlib
>=1.23.0 numpy
>=1.5.0 pandas
- seaborn
>=65.5.0 setuptools
>=1.9.2 scipy
>=1.0.3 toyplot
>=2.0.1 toytree
>=0.34.1 wheel
>=0.1.6 worldmap


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl bacdiving-1.2.7:

    pip install bacdiving-1.2.7.whl


نصب پکیج tar.gz bacdiving-1.2.7:

    pip install bacdiving-1.2.7.tar.gz