معرفی شرکت ها


babyrobot-1.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

An OpenAI Gym Environment for BabyRobot
ویژگی مقدار
سیستم عامل -
نام فایل babyrobot-1.0.9
نام babyrobot
نسخه کتابخانه 1.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Steve Roberts
ایمیل نویسنده steve@steveroberts.name
آدرس صفحه اصلی https://github.com/WhatIThinkAbout/BabyRobotGym
آدرس اینترنتی https://pypi.org/project/babyrobot/
مجوز MIT
# BabyRobotGym ### A Reinforcement Learning Gym Environment for Baby Robot ![](https://github.com/WhatIThinkAbout/BabyRobotGym/blob/main/notebooks/images/black_maze_run_opt.gif) The code in this repository accompanies the Towards Data Science article _[<b>Creating a Custom Gym Environment for Jupyter Notebooks</b> - <i>Part 1: Creating the framework</i>](https://towardsdatascience.com/creating-a-custom-gym-environment-for-jupyter-notebooks-e17024474617)_ and shows the steps required to create a custom gym environment with graphical output in a Jupyter notebook. ![](https://github.com/WhatIThinkAbout/BabyRobotGym/blob/main/notebooks/images/green_babyrobot_small.gif) ## To install: ``` pip install babyrobot ``` # Animation Example An example notebook showing how animation and movie creation can be done in the Baby Robot Gym environment: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/WhatIThinkAbout/BabyRobotGym/HEAD?labpath=notebooks%2FBabyRobot_Animation.ipynb) # API Example The example notebook, showing all of the API calls used to create a Baby Robot Gym environment can be opened here: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/WhatIThinkAbout/BabyRobotGym/HEAD?labpath=notebooks%2FBabyRobot_API.ipynb) # Reinforcement Learning ## Part 1: [State Values and Policy Evaluation](https://towardsdatascience.com/state-values-and-policy-evaluation-ceefdd8c2369) [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/WhatIThinkAbout/BabyRobotGym/HEAD?labpath=notebooks%2FReinforcement%20Learning%2FPart%201%20-%20State%20Values%20and%20Policy%20Evaluation.ipynb) ### Training Example An example of using the PPO Reinforcement Learning algorithm to train Baby Robot how to escape from a maze: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/WhatIThinkAbout/BabyRobotGym/blob/main/notebooks/PPO_Training.ipynb) ## Getting the Github Code: ### Testing The test notebook, showing how to run a simple RL environment can be opened here: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/WhatIThinkAbout/BabyRobotGym/blob/main/baby_robot_gym_test.ipynb) ## Cloning the Github repository To get up and running with this simple custom Gym Environment, do the following: ## 1\.&nbsp; <b><i>Get the code and move to the newly created directory</b></i>: `git clone https://github.com/WhatIThinkAbout/BabyRobotGym.git` <br> `cd BabyRobotGym` * this directory contains the files and folder structure. <br><br> ## 2\.&nbsp; <b><i>Create a Conda environment and install the required packages</b></i>:<br> To be able to run our environment we need to have a few other packages installed, most notably '_Gym_' itself. To make it easy to setup the environment the Github repo contains a couple of '_.yml_' files that list the required packages.  To use these to create a Conda environment and install the packages, do the following (choose the one appropriate for your operating system): On Unix: `conda env create -f environment_unix.yml`<br> On Windows:  `conda env create -f environment_windows.yml`<br> <br><br> ## 3\.&nbsp; <b><i>Activate the environment</b></i>: We've created the environment with all our required packages, so now it's just a case of activating it, as follows: `conda activate BabyRobotGym`<br> (when you're finished playing with this environment run "conda deactivate" to get back out) <br><br> ## 4\.&nbsp; <b><i>Run the notebook</b></i> Everything should now be in place to run our custom Gym environment. To test this we can run the sample Jupyter Notebook <i>'baby_robot_gym_test.ipynb'</i> that's included in the repository. This will load the _'BabyRobotEnv-v1'_ environment and test it using the Stable Baseline's environment checker.  To start this in a browser, just type: `jupyter notebook baby_robot_gym_test.ipynb`<br> (When running in jupyter notebook the current Conda environment will automatically be used and the required packages should all be available. It's also possible to run "<i>python -m ipykernel install --user --name=BabyRobotGym</i>" which will create a Jupyter Notebook kernel, that can then be selected from the notebook's menu.) Or else just open this file in VS Code and make sure _'BabyRobotGym'_ is selected as the kernel. This should make the _'BabyRobotEnv-v1'_ environment, test it in Stable Baselines and then run the environment until it completes, which happens to occur in a single step, since we haven't yet written the 'step' function! <br><br> # Notes: If, while running in a terminal (as opposed to a Jupyter Notebook) you get the warning "DeprecationWarning: Jupyter is migrating its paths to use standard platformdirs", in a terminal run: `export JUPYTER_PLATFORM_DIRS=1` followed by: `jupyter --paths`


نیازمندی

مقدار نام
==0.27.0 gymnasium
==0.11 ipycanvas
==2.23.0 imageio


نحوه نصب


نصب پکیج whl babyrobot-1.0.9:

    pip install babyrobot-1.0.9.whl


نصب پکیج tar.gz babyrobot-1.0.9:

    pip install babyrobot-1.0.9.tar.gz