معرفی شرکت ها


babypandas-0.1.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A restricted Pandas API
ویژگی مقدار
سیستم عامل -
نام فایل babypandas-0.1.7
نام babypandas
نسخه کتابخانه 0.1.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Aaron Fraenkel, Darren Liu
ایمیل نویسنده afraenkel@ucsd.edu
آدرس صفحه اصلی https://github.com/afraenkel/babypandas
آدرس اینترنتی https://pypi.org/project/babypandas/
مجوز -
# babypandas A `pandas` data-analysis library with a restricted API [![Build Status](https://travis-ci.com/afraenkel/babypandas.svg?branch=master)](https://travis-ci.com/afraenkel/babypandas) [![Documentation Status](https://readthedocs.org/projects/babypandas/badge/?version=latest)](https://babypandas.readthedocs.io/en/latest/?badge=latest) --- The `pandas` library is a confusing mess of methods, and for every task, no matter how simple, there are multiple ways of approaching it. `babypandas` is a simplified, introductory `pandas` library that allows for basic tabular data-analysis with only a small subset of methods and arguments. This allows for a smooth transition into `pandas`. The chosen methods are meant to align with the methods in Berkeley's `datascience` module, developed for the [data8](https://data8.org) course. However, unlike the `datascience` module, all code written in `babypandas` is also valid `pandas` code. --- ## Install To install `babypandas`, use `pip`: ``` pip install babypandas ``` --- ## Documentation See the [documentation](https://babypandas.readthedocs.io) page. --- ## FAQ *Who is this library for?* This library is intended for those wanting an introduction to data science in python, but want a focused, introduction much like what's covered in Berkeley's data8 course. The pandas methods available in this library encourage better Pandas usage through functional programming patterns and method chaining. *Why not just use the datascience module?* This library may be prefered over `datascience` when students will be moving to `pandas`. While this library serves as a restricted introduction to `pandas`, it doesn't shy away from some `pandas` usage patterns that may require care for new programmers: * The frequent use of named function arguments, * The use of boolean arrays (masks) to select rows, * The use of table indices. *How does this library compare to the datascience module?* Berkeley `datascience` module equivalents with `babypandas`: | `datascience` method | `babypandas` equivalent or close | method description | |---------------------------------------------|------------------------------------------------------------|-------------------------------------------| | `Table()` | `bpd.DataFrame()` | empty table formation | | `Table().with_columns(*labels_and_values)` | `bpd.DataFrame().assign(**kwargs)` | table from lists | | `table.with_columns(*labels_and_values)` | `df.assign(**kwargs)` | adding columns | | `table.with_rows(rows)` | `df.append(other_df, ignore_index=True)` | | | `Table.read_table(filepath)` | `bpd.read_csv(filepath)` | read in data | | `table.num_columns` | `df.shape[1]` | number of columns | | `table.num_rows` | `df.shape[0]` | number of rows | | `table.labels` | `df.columns` | list of columns | | `table.relabeled(label, new_label)` | `df.assign(new_label=df.get(label)).drop(columns=[label])` | rename columns | | `table.column(col)` | `df.get(col)` | get a specific column (by name) | | `table.column(col).item(0)` | `df.get(col).iloc[0]` | get a specific value in the table | | `table.select(col1, col2)` | `df.get([col1, col2])` | get columns as a df | | `table.drop(col1, col2)` | `df.drop(columns=[col1, col2])` | drop columns | | `table.sort(col)` | `df.sort_values(by=col)` | sorts values in a dataframe by col | | `table.take(row_indices_or_slice)` | `df.take(row_indices_or_slice)` | selects a single row | | `table.where(col, are.above(num))` | `df.loc[df.get(col) > num]` | selects rows based on condition | | `table.scatter(xcol, ycol)` | `df.plot(kind='scatter', x=xcol, y=ycol)` | plots a scatter plot | | `table.plot(xcol, ycol)` | `df.plot(x=xcol, y=ycol)` | plots a line plot | | `table.barh(col)` | `df.plot(kind='barh', x=col)` | plots a horizontal bar plot | | `table.hist(col, bins)` | `df.get(col).plot(kind='hist', bins=bins)` | plots a histogram | | `table.apply(fn, col)` | `df.get(col).apply(fn)` | apply function to a column | | `table.group(col)` | `df.groupby(col).count()` | give counts of values in a col | | `table.group(col, agg_fn)` | `df.groupby(col).agg_fn.reset_index()` | groups by column, aggregates with fn | | `table.group([col1, col2])` | `df.groupby([col1, col2]).count().reset_index()` | groups by two cols, agg with counts | | `table.group([col1, col2], sum)` | `df.groupby[col1, col2]).sum().reset_index()` | groups by two cols, agg with sum | | `table.join(leftcol, df2, rightcol)` | `df.merge(df2, left_on=leftcol, right_on=rightcol)` | merges two dataframes (diff col names) | | `table.join(col, df2, col)` | `df.merge(df2, on=col)` | merges two dataframes (same col names) | | `table.sample(n)` | `df.sample(n, replace=True)` | sample with replacement | | `sample_proportions(size, distr)` | `np.random.multinomial(size, distr) / size` | gets sample proportions of a distribution |


نیازمندی

مقدار نام
>=0.24 pandas
- numpy


نحوه نصب


نصب پکیج whl babypandas-0.1.7:

    pip install babypandas-0.1.7.whl


نصب پکیج tar.gz babypandas-0.1.7:

    pip install babypandas-0.1.7.tar.gz