معرفی شرکت ها


azure-schemaregistry-avroencoder-1.0.0b3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Microsoft Azure Schema Registry Avro Encoder Client Library for Python
ویژگی مقدار
سیستم عامل -
نام فایل azure-schemaregistry-avroencoder-1.0.0b3
نام azure-schemaregistry-avroencoder
نسخه کتابخانه 1.0.0b3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Microsoft Corporation
ایمیل نویسنده azpysdkhelp@microsoft.com
آدرس صفحه اصلی https://github.com/Azure/azure-sdk-for-python
آدرس اینترنتی https://pypi.org/project/azure-schemaregistry-avroencoder/
مجوز MIT License
# Azure Schema Registry Avro Encoder client library for Python Azure Schema Registry is a schema repository service hosted by Azure Event Hubs, providing schema storage, versioning, and management. This package provides an Avro encoder capable of encoding and decoding payloads containing Schema Registry schema identifiers and Avro-encoded content. [Source code][source_code] | [Package (PyPi)][pypi] | [API reference documentation][api_reference] | [Samples][sr_avro_samples] | [Changelog][change_log] ## _Disclaimer_ _Azure SDK Python packages support for Python 2.7 has ended 01 January 2022. For more information and questions, please refer to https://github.com/Azure/azure-sdk-for-python/issues/20691_ ## Getting started ### Install the package Install the Azure Schema Registry Avro Encoder client library for Python with [pip][pip]: ```Bash pip install azure-schemaregistry-avroencoder ``` ### Prerequisites: To use this package, you must have: * Azure subscription - [Create a free account][azure_sub] * [Azure Schema Registry][schemaregistry_service] - [Here is the quickstart guide][quickstart_guide] to create a Schema Registry group using the Azure portal. * Python 3.6 or later - [Install Python][python] ### Authenticate the client Interaction with the Schema Registry Avro Encoder starts with an instance of AvroEncoder class, which takes the schema group name and the [Schema Registry Client][schemaregistry_client] class. The client constructor takes the Event Hubs fully qualified namespace and and Azure Active Directory credential: * The fully qualified namespace of the Schema Registry instance should follow the format: `<yournamespace>.servicebus.windows.net`. * An AAD credential that implements the [TokenCredential][token_credential_interface] protocol should be passed to the constructor. There are implementations of the `TokenCredential` protocol available in the [azure-identity package][pypi_azure_identity]. To use the credential types provided by `azure-identity`, please install the Azure Identity client library for Python with [pip][pip]: ```Bash pip install azure-identity ``` * Additionally, to use the async API, you must first install an async transport, such as [aiohttp](https://pypi.org/project/aiohttp/): ```Bash pip install aiohttp ``` **Create AvroEncoder using the azure-schemaregistry library:** ```python import os from azure.schemaregistry import SchemaRegistryClient from azure.schemaregistry.encoder.avroencoder import AvroEncoder from azure.identity import DefaultAzureCredential credential = DefaultAzureCredential() # Namespace should be similar to: '<your-eventhub-namespace>.servicebus.windows.net' fully_qualified_namespace = os.environ['SCHEMAREGISTRY_FULLY_QUALIFIED_NAMESPACE'] group_name = os.environ['SCHEMAREGISTRY_GROUP'] schema_registry_client = SchemaRegistryClient(fully_qualified_namespace, credential) encoder = AvroEncoder(client=schema_registry_client, group_name=group_name) ``` ## Key concepts ### AvroEncoder Provides API to encode to and decode from Avro Binary Encoding plus a content type with schema ID. Uses [SchemaRegistryClient][schemaregistry_client] to get schema IDs from schema content or vice versa. ### Supported message models Support has been added to certain Azure Messaging SDK model classes for interoperability with the `AvroEncoder`. These models are subtypes of the `MessageType` protocol defined under the `azure.schemaregistry.encoder.avroencoder` namespace. Currently, the supported model classes are: - `azure.eventhub.EventData` for `azure-eventhub>=5.9.0` ### Message format If a message type that follows the MessageType protocol is provided to the encoder for encoding, it will set the corresponding content and content type properties, where: - `content`: Avro payload (in general, format-specific payload) - Avro Binary Encoding - NOT Avro Object Container File, which includes the schema and defeats the purpose of this encoder to move the schema out of the message payload and into the schema registry. - `content type`: a string of the format `avro/binary+<schema ID>`, where: - `avro/binary` is the format indicator - `<schema ID>` is the hexadecimal representation of GUID, same format and byte order as the string from the Schema Registry service. If `EventData` is passed in as the message type, the following properties will be set on the `EventData` object: - The `body` property will be set to the content value. - The `content_type` property will be set to the content type value. If message type is not provided, and by default, the encoder will create the following dict: `{"content": <Avro encoded payload>, "content_type": 'avro/binary+<schema ID>' }` ## Examples The following sections provide several code snippets covering some of the most common Schema Registry tasks, including: - [Encoding](#encoding) - [Decoding](#decoding) - [Event Hubs Sending Integration](#event-hubs-sending-integration) - [Event Hubs Receiving Integration](#event-hubs-receiving-integration) ### Encoding Use the `AvroEncoder.encode` method to encode content with the given Avro schema. The method will use a schema previously registered to the Schema Registry service and keep the schema cached for future encoding usage. In order to avoid pre-registering the schema to the service and automatically register it with the `encode` method, the keyword argument `auto_register=True` should be passed to the `AvroEncoder` constructor. ```python import os from azure.schemaregistry import SchemaRegistryClient from azure.schemaregistry.encoder.avroencoder import AvroEncoder from azure.identity import DefaultAzureCredential from azure.eventhub import EventData token_credential = DefaultAzureCredential() fully_qualified_namespace = os.environ['SCHEMAREGISTRY_FULLY_QUALIFIED_NAMESPACE'] group_name = os.environ['SCHEMAREGISTRY_GROUP'] name = "example.avro.User" format = "Avro" definition = """ {"namespace": "example.avro", "type": "record", "name": "User", "fields": [ {"name": "name", "type": "string"}, {"name": "favorite_number", "type": ["int", "null"]}, {"name": "favorite_color", "type": ["string", "null"]} ] }""" schema_registry_client = SchemaRegistryClient(fully_qualified_namespace, token_credential) schema_registry_client.register_schema(group_name, name, definition, format) encoder = AvroEncoder(client=schema_registry_client, group_name=group_name) with encoder: dict_content = {"name": "Ben", "favorite_number": 7, "favorite_color": "red"} event_data = encoder.encode(dict_content, schema=definition, message_type=EventData) # OR message_content_dict = encoder.encode(dict_content, schema=definition) event_data = EventData.from_message_content(message_content_dict["content"], message_content_dict["content_type"]) ``` ### Decoding Use the `AvroEncoder.decode` method to decode the Avro-encoded content by either: - Passing in a message object that is a subtype of the MessageType protocol. - Passing in a dict with keys `content`(type bytes) and `content_type` (type string). The method automatically retrieves the schema from the Schema Registry Service and keeps the schema cached for future decoding usage. ```python import os from azure.schemaregistry import SchemaRegistryClient from azure.schemaregistry.encoder.avroencoder import AvroEncoder from azure.identity import DefaultAzureCredential token_credential = DefaultAzureCredential() fully_qualified_namespace = os.environ['SCHEMAREGISTRY_FULLY_QUALIFIED_NAMESPACE'] group_name = "<your-group-name>" schema_registry_client = SchemaRegistryClient(fully_qualified_namespace, token_credential) encoder = AvroEncoder(client=schema_registry_client) with encoder: # event_data is an EventData object with Avro encoded body dict_content = {"name": "Ben", "favorite_number": 7, "favorite_color": "red"} event_data = encoder.encode(dict_content, schema=definition, message_type=EventData) decoded_content = encoder.decode(event_data) # OR encoded_bytes = b'<content_encoded_by_azure_schema_registry_avro_encoder>' content_type = 'avro/binary+<schema_id_of_corresponding_schema>' content_dict = {"content": encoded_bytes, "content_type": content_type} decoded_content = encoder.decode(content_dict) ``` ### Event Hubs Sending Integration Integration with [Event Hubs][eventhubs_repo] to send an `EventData` object with `body` set to Avro-encoded content and corresponding `content_type`. ```python import os from azure.eventhub import EventHubProducerClient, EventData from azure.schemaregistry import SchemaRegistryClient from azure.schemaregistry.encoder.avroencoder import AvroEncoder from azure.identity import DefaultAzureCredential token_credential = DefaultAzureCredential() fully_qualified_namespace = os.environ['SCHEMAREGISTRY_FULLY_QUALIFIED_NAMESPACE'] group_name = os.environ['SCHEMAREGISTRY_GROUP'] eventhub_connection_str = os.environ['EVENT_HUB_CONN_STR'] eventhub_name = os.environ['EVENT_HUB_NAME'] definition = """ {"namespace": "example.avro", "type": "record", "name": "User", "fields": [ {"name": "name", "type": "string"}, {"name": "favorite_number", "type": ["int", "null"]}, {"name": "favorite_color", "type": ["string", "null"]} ] }""" schema_registry_client = SchemaRegistryClient(fully_qualified_namespace, token_credential) avro_encoder = AvroEncoder(client=schema_registry_client, group_name=group_name, auto_register=True) eventhub_producer = EventHubProducerClient.from_connection_string( conn_str=eventhub_connection_str, eventhub_name=eventhub_name ) with eventhub_producer, avro_encoder: event_data_batch = eventhub_producer.create_batch() dict_content = {"name": "Bob", "favorite_number": 7, "favorite_color": "red"} event_data = avro_encoder.encode(dict_content, schema=definition, message_type=EventData) event_data_batch.add(event_data) eventhub_producer.send_batch(event_data_batch) ``` ### Event Hubs Receiving Integration Integration with [Event Hubs][eventhubs_repo] to receive an `EventData` object and decode the the Avro-encoded `body` value. ```python import os from azure.eventhub import EventHubConsumerClient from azure.schemaregistry import SchemaRegistryClient from azure.schemaregistry.encoder.avroencoder import AvroEncoder from azure.identity import DefaultAzureCredential token_credential = DefaultAzureCredential() fully_qualified_namespace = os.environ['SCHEMAREGISTRY_FULLY_QUALIFIED_NAMESPACE'] group_name = os.environ['SCHEMAREGISTRY_GROUP'] eventhub_connection_str = os.environ['EVENT_HUB_CONN_STR'] eventhub_name = os.environ['EVENT_HUB_NAME'] schema_registry_client = SchemaRegistryClient(fully_qualified_namespace, token_credential) avro_encoder = AvroEncoder(client=schema_registry_client, group_name=group_name) eventhub_consumer = EventHubConsumerClient.from_connection_string( conn_str=eventhub_connection_str, consumer_group='$Default', eventhub_name=eventhub_name, ) def on_event(partition_context, event): decoded_content = avro_encoder.decode(event) with eventhub_consumer, avro_encoder: eventhub_consumer.receive(on_event=on_event, starting_position="-1") ``` ## Troubleshooting ### General Azure Schema Registry Avro Encoder raises exceptions defined in [Azure Core][azure_core] if errors are encountered when communicating with the Schema Registry service. Errors related to invalid content/content types and invalid schemas will be raised as `azure.schemaregistry.encoder.avroencoder.InvalidContentError` and `azure.schemaregistry.encoder.avroencoder.InvalidSchemaError`, respectively, where `__cause__` will contain the underlying exception raised by the Apache Avro library. ### Logging This library uses the standard [logging][python_logging] library for logging. Basic information about HTTP sessions (URLs, headers, etc.) is logged at INFO level. Detailed DEBUG level logging, including request/response bodies and unredacted headers, can be enabled on a client with the `logging_enable` argument: ```python import sys import os import logging from azure.schemaregistry import SchemaRegistryClient from azure.schemaregistry.encoder.avroencoder import AvroEncoder from azure.identity import DefaultAzureCredential # Create a logger for the SDK logger = logging.getLogger('azure.schemaregistry') logger.setLevel(logging.DEBUG) # Configure a console output handler = logging.StreamHandler(stream=sys.stdout) logger.addHandler(handler) fully_qualified_namespace = os.environ['SCHEMAREGISTRY_FULLY_QUALIFIED_NAMESPACE'] group_name = os.environ['SCHEMAREGISTRY_GROUP'] credential = DefaultAzureCredential() schema_registry_client = SchemaRegistryClient(fully_qualified_namespace, credential, logging_enable=True) # This client will log detailed information about its HTTP sessions, at DEBUG level encoder = AvroEncoder(client=schema_registry_client, group_name=group_name) ``` Similarly, `logging_enable` can enable detailed logging for a single operation, even when it isn't enabled for the client: ```py encoder.encode(dict_content, schema=definition, logging_enable=True) ``` ## Next steps ### More sample code Further examples demonstrating common Azure Schema Registry Avro Encoder scenarios are in the [samples][sr_avro_samples] directory. ## Contributing This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com. When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA. This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments. <!-- LINKS --> [pip]: https://pypi.org/project/pip/ [pypi]: https://pypi.org/project/azure-schemaregistry-avroencoder/ [python]: https://www.python.org/downloads/ [azure_core]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/README.md [azure_sub]: https://azure.microsoft.com/free/ [python_logging]: https://docs.python.org/3/library/logging.html [sr_avro_samples]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/schemaregistry/azure-schemaregistry-avroencoder/samples [api_reference]: https://docs.microsoft.com/python/api/overview/azure/schemaregistry-avroencoder-readme [source_code]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/schemaregistry/azure-schemaregistry-avroencoder [change_log]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/schemaregistry/azure-schemaregistry-avroencoder/CHANGELOG.md [schemaregistry_client]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/schemaregistry/azure-schemaregistry [schemaregistry_service]: https://aka.ms/schemaregistry [eventhubs_repo]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/eventhub/azure-eventhub [token_credential_interface]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/core/azure-core/azure/core/credentials.py [pypi_azure_identity]: https://pypi.org/project/azure-identity/ [quickstart_guide]: https://docs.microsoft.com/azure/event-hubs/create-schema-registry # Release History ## 1.0.0 (2022-05-10) **Note:** This is the first stable release of our efforts to create a user-friendly Pythonic Avro Encoder library that integrates with the Python client library for Azure Schema Registry. ### Features Added - `AvroEncoder` sync and async classes provide the functionality to encode and decode content which follows a schema with the RecordSchema format, as defined by the Apache Avro specification. The Apache Avro library is used as the implementation for encoding and decoding. The encoder will automatically register and retrieve schemas from Azure Schema Registry Service. It provides the following methods: - constructor: If `auto_register=True` keyword is passed in, will automatically register schemas passed in to the `encode` method. Otherwise, and by default, will require pre-registering of schemas passed to `encode`. Takes a `group_name` argument that is optional when decoding, but required for encoding. - `encode`: Encodes dict content into bytes according to the given schema and registers schema if needed. Returns either a dict of encoded content and corresponding content type or a `MessageType` subtype object, depending on arguments provided. - `decode`: Decodes bytes content into dict content by automatically retrieving schema from the service. - `MessageContent` TypedDict has been introduced with the following required keys: - `content`: The bytes content. - `content_type`: The string content type, which holds the schema ID and the record format indicator. - `MessageType` has been introduced with the following methods: - `from_message_content`: Class method that creates an object with given bytes content and string content type. - `__message_content__`: Returns a `MessageContent` object with content and content type values set to their respective properties on the object. - Schemas and Schema IDs are cached locally, so that multiple calls with the same schema/schema ID will not trigger multiple service calls. - The number of hits, misses, and total entries for the schema/schema ID caches will be logged at an info level when a new entry is added. - `InvalidContentError` has been introduced for errors related to invalid content and content types, where `__cause__` will contain the underlying exception raised by the Avro library. - `InvalidSchemaError` has been introduced for errors related to invalid schemas, where `__cause__` will contain the underlying exception raised by the Apache Avro library. - The `encode` and `decode` methods on `AvroEncoder` support the following message models: - `azure.eventhub.EventData` in `azure-eventhub>=5.9.0` ### Other Changes - This package is meant to replace the azure-schemaregistry-avroserializer package, which will no longer be supported. - `group_name` is now an optional parameter in the sync and async `AvroEncoder` constructors. ## 1.0.0b3 (2022-04-05) ### Breaking Changes - `auto_register_schemas` keyword in the sync and async `AvroEncoder` constructors has been renamed `auto_register`. - `SchemaParseError`, `SchemaEncodeError`, and `SchemaDecodeError` have been replaced with `InvalidContentError` and `InvalidSchemaError`. The errors have been added under the `azure.schemaregistry.encoder.avroencoder` namespace. - The `exceptions` module in `azure.schemaregistry.encoder.avroencoder` has been removed. - The `encode` method on the sync and async `AvroEncoder` only allows subtypes of the `MessageType` protocol as values to the `message_type` optional parameter, rather than any callable that has the method signature `(content: bytes, content_type: str, **kwargs: Any)`. - The number of hits/misses, in addition to number of entries, for the schema/schema ID caches will be logged at an info level when a new entry is added. ### Other Changes - This release and future releases will not have backward compatibility support for decoding data that was encoded with the AvroSerializer. - The `encode` and `decode` methods on `AvroEncoder` support the following message models: - `azure.eventhub.EventData` in `azure-eventhub==5.9.0b3` ## 1.0.0b2 (2022-03-09) ### Features Added - `request_options` has been added to `encode` and `decode` on `AvroEncoder` as an optional parameter to be passed into client requests. - The size of the current schema/schema ID caches will be logged at an info level when a new entry has been added. ### Breaking Changes - `MessageMetadataDict` has been renamed `MessageContent`. - `data` in `MessageContent` has been renamed `content`. - The `data` parameter in `encode` and `decode` on the sync and async `AvroEncoder` has been renamed `content`. - The `from_message_data` method in the `MessageType` protocol has been renamed `from_message_content`. The `data` parameter in `from_message_content` has been renamed `content`. - The `__message_data__` method in the `MessageType` protocol has been renamed `__message_content__`. ### Other Changes - This beta release will be backward compatible for decoding data that was encoded with the AvroSerializer. - The `encode` and `decode` methods on `AvroEncoder` support the following message models: - `azure.eventhub.EventData` in `azure-eventhub==5.9.0b2` ## 1.0.0b1 (2022-02-09) This version and all future versions will require Python 3.6+. Python 2.7 is no longer supported. ### Features Added - This package is meant to replace the azure-schemaregistry-avroserializer. - APIs have been updated to allow for encoding directly to and decoding from message type objects, where the data value is the Avro encoded payload. - The content type of the message will hold the schema ID and record format indicator. ### Other Changes - This beta release will be backward compatible for decoding data that was encoded with the AvroSerializer. - The `encode` and `decode` methods on `AvroEncoder` support the following message models: - `azure.eventhub.EventData` in `azure-eventhub==5.9.0b1`


نیازمندی

مقدار نام
<2.0.0,>=1.0.0 azure-schemaregistry
>=1.11.0 avro
>=4.0.1 typing-extensions


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl azure-schemaregistry-avroencoder-1.0.0b3:

    pip install azure-schemaregistry-avroencoder-1.0.0b3.whl


نصب پکیج tar.gz azure-schemaregistry-avroencoder-1.0.0b3:

    pip install azure-schemaregistry-avroencoder-1.0.0b3.tar.gz