معرفی شرکت ها


azure-healthinsights-cancerprofiling-1.0.0b1.post1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Microsoft Cognitive Services Health Insights Cancer Profilings Client Library for Python
ویژگی مقدار
سیستم عامل -
نام فایل azure-healthinsights-cancerprofiling-1.0.0b1.post1
نام azure-healthinsights-cancerprofiling
نسخه کتابخانه 1.0.0b1.post1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Microsoft Corporation
ایمیل نویسنده azpysdkhelp@microsoft.com
آدرس صفحه اصلی https://github.com/Azure/azure-sdk-for-python/tree/main/sdk
آدرس اینترنتی https://pypi.org/project/azure-healthinsights-cancerprofiling/
مجوز MIT License
# Azure Cognitive Services Health Insights Cancer Profiling client library for Python [Health Insights](https://review.learn.microsoft.com/azure/azure-health-insights/?branch=release-azure-health-insights) is an Azure Applied AI Service built with the Azure Cognitive Services Framework, that leverages multiple Cognitive Services, Healthcare API services and other Azure resources. The [Cancer Profiling model][cancer_profiling_docs] receives clinical records of oncology patients and outputs cancer staging, such as clinical stage TNM categories and pathologic stage TNM categories as well as tumor site, histology. [Source code][hi_source_code] | [Package (PyPI)][hi_pypi] | [API reference documentation][cancer_profiling_api_documentation] | [Product documentation][product_docs] | [Samples][hi_samples] ## Getting started ### Prerequisites - Python 3.7 or later is required to use this package. - You need an [Azure subscription][azure_sub] to use this package. - An existing Cognitive Services Health Insights instance. ### Install the package ```bash pip install azure-healthinsights-cancerprofiling ``` This table shows the relationship between SDK versions and supported API versions of the service: |SDK version|Supported API version of service | |-------------|---------------| |1.0.0b1 | 2023-03-01-preview| ### Authenticate the client #### Get the endpoint You can find the endpoint for your Health Insights service resource using the [Azure Portal][azure_portal] or [Azure CLI][azure_cli] ```bash # Get the endpoint for the Health Insights service resource az cognitiveservices account show --name "resource-name" --resource-group "resource-group-name" --query "properties.endpoint" ``` #### Get the API Key You can get the **API Key** from the Health Insights service resource in the Azure Portal. Alternatively, you can use **Azure CLI** snippet below to get the API key of your resource. ```PowerShell az cognitiveservices account keys list --resource-group <your-resource-group-name> --name <your-resource-name> ``` #### Create a CancerProfilingClient with an API Key Credential Once you have the value for the API key, you can pass it as a string into an instance of **AzureKeyCredential**. Use the key as the credential parameter to authenticate the client: ```python import os from azure.core.credentials import AzureKeyCredential from azure.healthinsights.cancerprofiling.aio import CancerProfilingClient KEY = os.environ["HEALTHINSIGHTS_KEY"] ENDPOINT = os.environ["HEALTHINSIGHTS_ENDPOINT"] cancer_profiling_client = CancerProfilingClient(endpoint=ENDPOINT, credential=AzureKeyCredential(KEY)) ``` ### Long-Running Operations Long-running operations are operations which consist of an initial request sent to the service to start an operation, followed by polling the service at intervals to determine whether the operation has completed or failed, and if it has succeeded, to get the result. Methods that support healthcare analysis, custom text analysis, or multiple analyses are modeled as long-running operations. The client exposes a `begin_<method-name>` method that returns a poller object. Callers should wait for the operation to complete by calling `result()` on the poller object returned from the `begin_<method-name>` method. Sample code snippets are provided to illustrate using long-running operations [below](#examples "Examples"). ## Key concepts The Cancer Profiling model allows you to infer cancer attributes such as tumor site, histology, clinical stage TNM categories and pathologic stage TNM categories from unstructured clinical documents. ## Examples The following section provides several code snippets covering some of the most common Health Insights - Cancer Profiling service tasks, including: - [Cancer Profiling](#cancer-profiling "Cancer Profiling") ### Cancer Profiling Infer key cancer attributes such as tumor site, histology, clinical stage TNM categories and pathologic stage TNM categories from a patient's unstructured clinical documents. ```python import asyncio import os import datetime from azure.core.credentials import AzureKeyCredential from azure.healthinsights.cancerprofiling.aio import CancerProfilingClient from azure.healthinsights.cancerprofiling import models KEY = os.environ["HEALTHINSIGHTS_KEY"] ENDPOINT = os.environ["HEALTHINSIGHTS_ENDPOINT"] # Create an Onco Phenotype client # <client> cancer_profiling_client = CancerProfilingClient(endpoint=ENDPOINT, credential=AzureKeyCredential(KEY)) # </client> # Construct patient # <PatientConstructor> patient_info = models.PatientInfo(sex=models.PatientInfoSex.FEMALE, birth_date=datetime.date(1979, 10, 8)) patient1 = models.PatientRecord(id="patient_id", info=patient_info) # </PatientConstructor> # Add document list # <DocumentList> doc_content1 = """ 15.8.2021 Jane Doe 091175-8967 42 year old female, married with 3 children, works as a nurse Healthy, no medications taken on a regular basis. PMHx is significant for migraines with aura, uses Mirena for contraception. Smoking history of 10 pack years (has stopped and relapsed several times). She is in c/o 2 weeks of productive cough and shortness of breath. She has a fever of 37.8 and general weakness. Denies night sweats and rash. She denies symptoms of rhinosinusitis, asthma, and heartburn. On PE: GENERAL: mild pallor, no cyanosis. Regular breathing rate. LUNGS: decreased breath sounds on the base of the right lung. Vesicular breathing. No crackles, rales, and wheezes. Resonant percussion. PLAN: Will be referred for a chest x-ray. ====================================== CXR showed mild nonspecific opacities in right lung base. PLAN: Findings are suggestive of a working diagnosis of pneumonia. The patient is referred to a follow-up CXR in 2 weeks.""" patient_document1 = models.PatientDocument(type=models.DocumentType.NOTE, id="doc1", content=models.DocumentContent( source_type=models.DocumentContentSourceType.INLINE, value=doc_content1), clinical_type=models.ClinicalDocumentType.IMAGING, language="en", created_date_time=datetime.datetime(2021, 8, 15)) doc_content2 = """ Oncology Clinic 20.10.2021 Jane Doe 091175-8967 42-year-old healthy female who works as a nurse in the ER of this hospital. First menstruation at 11 years old. First delivery- 27 years old. She has 3 children. Didn't breastfeed. Contraception- Mirena. Smoking- 10 pack years. Mother- Belarusian. Father- Georgian. About 3 months prior to admission, she stated she had SOB and was febrile. She did a CXR as an outpatient which showed a finding in the base of the right lung- possibly an infiltrate. She was treated with antibiotics with partial response. 6 weeks later a repeat CXR was performed- a few solid dense findings in the right lung. Therefore, she was referred for a PET-CT which demonstrated increased uptake in the right breast, lymph nodes on the right a few areas in the lungs and liver. On biopsy from the lesion in the right breast- triple negative adenocarcinoma. Genetic testing has not been done thus far. Genetic counseling- the patient denies a family history of breast, ovary, uterus, and prostate cancer. Her mother has chronic lymphocytic leukemia (CLL). She is planned to undergo genetic tests because the aggressive course of the disease, and her young age. Impression: Stage 4 triple negative breast adenocarcinoma. Could benefit from biological therapy. Different treatment options were explained- the patient wants to get a second opinion.""" patient_document2 = models.PatientDocument(type=models.DocumentType.NOTE, id="doc2", content=models.DocumentContent( source_type=models.DocumentContentSourceType.INLINE, value=doc_content2), clinical_type=models.ClinicalDocumentType.PATHOLOGY, language="en", created_date_time=datetime.datetime(2021, 10, 20)) doc_content3 = """ PATHOLOGY REPORT Clinical Information Ultrasound-guided biopsy; A. 18 mm mass; most likely diagnosis based on imaging: IDC Diagnosis A. BREAST, LEFT AT 2:00 4 CM FN; ULTRASOUND-GUIDED NEEDLE CORE BIOPSIES: - Invasive carcinoma of no special type (invasive ductal carcinoma), grade 1 Nottingham histologic grade: 1/3 (tubules 2; nuclear grade 2; mitotic rate 1; total score; 5/9) Fragments involved by invasive carcinoma: 2 Largest measurement of invasive carcinoma on a single fragment: 7 mm Ductal carcinoma in situ (DCIS): Present Architectural pattern: Cribriform Nuclear grade: 2- -intermediate Necrosis: Not identified Fragments involved by DCIS: 1 Largest measurement of DCIS on a single fragment: Span 2 mm Microcalcifications: Present in benign breast tissue and invasive carcinoma Blocks with invasive carcinoma: A1 Special studies: Pending""" patient_document3 = models.PatientDocument(type=models.DocumentType.NOTE, id="doc3", content=models.DocumentContent( source_type=models.DocumentContentSourceType.INLINE, value=doc_content3), clinical_type=models.ClinicalDocumentType.PATHOLOGY, language="en", created_date_time=datetime.datetime(2022, 1, 1)) patient_doc_list = [patient_document1, patient_document2, patient_document3] patient1.data = patient_doc_list # <\DocumentList> # Set configuration to include evidence for the cancer staging inferences configuration = models.OncoPhenotypeModelConfiguration(include_evidence=True) # Construct the request with the patient and configuration cancer_profiling_data = models.OncoPhenotypeData(patients=[patient1], configuration=configuration) poller = await cancer_profiling_client.begin_infer_cancer_profile(cancer_profiling_data) cancer_profiling_result = await poller.result() if cancer_profiling_result.status == models.JobStatus.SUCCEEDED: results = cancer_profiling_result.results for patient_result in results.patients: print(f"\n==== Inferences of Patient {patient_result.id} ====") for inference in patient_result.inferences: print( f"\n=== Clinical Type: {str(inference.type)} Value: {inference.value}\ ConfidenceScore: {inference.confidence_score} ===") for evidence in inference.evidence: data_evidence = evidence.patient_data_evidence print( f"Evidence {data_evidence.id} {data_evidence.offset} {data_evidence.length}\ {data_evidence.text}") else: errors = cancer_profiling_result.errors if errors is not None: for error in errors: print(f"{error.code} : {error.message}") ``` ## Troubleshooting ### General Health Insights Cancer Profiling client library will raise exceptions defined in [Azure Core][azure_core]. ### Logging This library uses the standard [logging](https://docs.python.org/3/library/logging.html) library for logging. Basic information about HTTP sessions (URLs, headers, etc.) is logged at `INFO` level. Detailed `DEBUG` level logging, including request/response bodies and **unredacted** headers, can be enabled on the client or per-operation with the `logging_enable` keyword argument. See full SDK logging documentation with examples [here](https://learn.microsoft.com/azure/developer/python/sdk/azure-sdk-logging). ### Optional Configuration Optional keyword arguments can be passed in at the client and per-operation level. The azure-core [reference documentation](https://azuresdkdocs.blob.core.windows.net/$web/python/azure-core/latest/azure.core.html) describes available configurations for retries, logging, transport protocols, and more. ## Next steps ## Additional documentation For more extensive documentation on Azure Health Insights Cancer Profiling, see the [Cancer Profiling documentation][cancer_profiling_docs] on docs.microsoft.com. ## Contributing This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com. When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA. This project has adopted the [Microsoft Open Source Code of Conduct][code_of_conduct]. For more information, see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments. <!-- LINKS --> [azure_core]: https://azuresdkdocs.blob.core.windows.net/$web/python/azure-core/latest/azure.core.html#module-azure.core.exceptions [code_of_conduct]: https://opensource.microsoft.com/codeofconduct/ [azure_sub]: https://azure.microsoft.com/free/ [azure_portal]: https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesHealthInsights [azure_cli]: https://learn.microsoft.com/cli/azure/ [cancer_profiling_docs]: https://review.learn.microsoft.com/azure/cognitive-services/health-decision-support/oncophenotype/overview?branch=main [cancer_profiling_api_documentation]: https://review.learn.microsoft.com/rest/api/cognitiveservices/healthinsights/onco-phenotype?branch=healthin202303 [hi_pypi]: https://pypi.org/project/azure-healthinsights-cancerprofiling/ [hi_pypi]: https://pypi.org/ [product_docs]:https://review.learn.microsoft.com/azure/cognitive-services/health-decision-support/oncophenotype/?branch=main [hi_samples]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/healthinsights/azure-healthinsights-cancerprofiling/samples [hi_source_code]: https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/healthinsights/azure-healthinsights-cancerprofiling/azure/healthinsights/cancerprofiling


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl azure-healthinsights-cancerprofiling-1.0.0b1.post1:

    pip install azure-healthinsights-cancerprofiling-1.0.0b1.post1.whl


نصب پکیج tar.gz azure-healthinsights-cancerprofiling-1.0.0b1.post1:

    pip install azure-healthinsights-cancerprofiling-1.0.0b1.post1.tar.gz