معرفی شرکت ها


azapy-1.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Financial Portfolio Optimization Algorithms
ویژگی مقدار
سیستم عامل -
نام فایل azapy-1.1.1
نام azapy
نسخه کتابخانه 1.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Mircea Marinescu
ایمیل نویسنده mircea.marinescu@outlook.com
آدرس صفحه اصلی https://github.com/Mircea-MMXXI/azapy.git
آدرس اینترنتی https://pypi.org/project/azapy/
مجوز GPLv3
# azapy project ## Financial Portfolio Optimization Algorithms ### An open-source python library for everybody ![TimeSeries](graphics/Portfolio_1.png) Author: Mircea Marinescu email: Mircea.Marinescu@outlook.com [Package documentation](https://azapy.readthedocs.io/en/latest) Package installation: `pip install azapy` [![ko-fi](https://ko-fi.com/img/githubbutton_sm.svg)](https://ko-fi.com/D1D07G22H) ### Contents A. Risk-based portfolio optimization algorithms: 1. mCVaR - mixture CVaR (Conditional Value at Risk) 2. mSMCR - mixture SMCR (Second Moment Coherent Risk) 3. mMAD - m-level MAD (Mean Absolute Deviation) 4. mLSD - m-level LSD (Lower Semi-Deviation) 5. mBTAD - mixture BTAD (Below Threshold Absolute Deviation) 6. mBTSD - mixture BTSD (Below Threshold Semi-Deviation) 7. GINI - Gini index (as in Corrado Gini statistician 1884-1965) 8. SD - standard deviation 9. MV - variance (as in mean-variance model) 10. mEVaR - mixture EVaR (Entropic Value at Risk) <span style="color:red">(alpha version)</span> For each risk-based optimization class the following strategies are available: 1. Optimal-risk portfolio for targeted expected rate of return value 2. Sharpe-optimal portfolio - maximization of generalized Sharpe ratio 3. Sharpe-optimal portfolio - minimization of inverse generalized Sharpe ratio 4. Minimum risk portfolio 5. Optimal-risk portfolio for a fixed risk-aversion factor 6. Optimal-risk portfolio with the same risk value as a benchmark portfolio (e.g., same as equal weighted portfolio) 7. Optimal-diversified portfolio for targeted expected rate of return (minimization of inverse *1-D* ratio) <span style="color:blue">(beta version)</span> 8. Optimal-diversified portfolio for targeted expected rate of return (maximization of *1-D* ratio) <span style="color:blue">(beta version)</span> 9. Maximum diversified portfolio <span style="color:blue">(beta version)</span> 10. Optimal-diversified portfolio with the same diversification factor as a benchmark portfolio (e.g., same as equal weighted portfolio) <span style="color:blue">(beta version)</span> 11. Optimal-diversified portfolio with the same expected rate of return as a benchmark portfolio (e.g., same as equal weighted portfolio) <span style="color:blue">(beta version)</span> B. "Naïve" portfolio strategies: 1. Constant weighted portfolio. A particular case is equal weighted portfolio. 2. Inverse volatility portfolio (i.e., portfolio weights are proportional to the inverse of asset volatilities) 3. Inverse variance portfolio (i.e., portfolio weights are proportional to the inverse of asset variances) 4. Inverse drawdown portfolio (i.e., portfolio weights are proportional to the asset absolute value of maximum drawdowns over a predefined historical period) C. Greedy portfolio optimization strategies: 1. Kelly's portfolio (as in John Larry Kelly Jr. scientist 1923-1965) - maximization of portfolio log returns Utility functions: * Collect historical market data from various providers. Supported providers: - yahoo.com - eodhistoricaldata.com - alphavantage.co - marketstack.com * Generate business calendars. At this point only NYSE business calendar is implemented. * Generate rebalancing portfolio schedules. * Append a cash-like security to an existing market data object. * Update market data saved in a directory. The pollowing third-party packages were used with azapy 1.1.1 * python 3.11.2 * pandas 1.5.3 * numpy 1.23.5 * scipy 1.10.0 * statsmodels 0.13.5 * matplotlib 3.7.1 * plotly 5.9.0 * requests 2.28.1 * pandas_market_calendars 4.1.4 * ecos 2.0.12 * cvxopt 1.3.0.1 * ta 0.10.2 * yfinance 0.2.14


نیازمندی

مقدار نام
- numpy
- pandas
- scipy
- plotly
- matplotlib
- requests
- ecos
- pandas-market-calendars
- cvxopt
- ta
- yfinance
- statsmodels


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl azapy-1.1.1:

    pip install azapy-1.1.1.whl


نصب پکیج tar.gz azapy-1.1.1:

    pip install azapy-1.1.1.tar.gz