معرفی شرکت ها


aws-cdk.aws-sagemaker-alpha-2.78.0a0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

The CDK Construct Library for AWS::SageMaker
ویژگی مقدار
سیستم عامل -
نام فایل aws-cdk.aws-sagemaker-alpha-2.78.0a0
نام aws-cdk.aws-sagemaker-alpha
نسخه کتابخانه 2.78.0a0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Amazon Web Services
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/aws/aws-cdk
آدرس اینترنتی https://pypi.org/project/aws-cdk.aws-sagemaker-alpha/
مجوز Apache-2.0
# Amazon SageMaker Construct Library <!--BEGIN STABILITY BANNER-->--- ![cdk-constructs: Experimental](https://img.shields.io/badge/cdk--constructs-experimental-important.svg?style=for-the-badge) > The APIs of higher level constructs in this module are experimental and under active development. > They are subject to non-backward compatible changes or removal in any future version. These are > not subject to the [Semantic Versioning](https://semver.org/) model and breaking changes will be > announced in the release notes. This means that while you may use them, you may need to update > your source code when upgrading to a newer version of this package. --- <!--END STABILITY BANNER--> Amazon SageMaker provides every developer and data scientist with the ability to build, train, and deploy machine learning models quickly. Amazon SageMaker is a fully-managed service that covers the entire machine learning workflow to label and prepare your data, choose an algorithm, train the model, tune and optimize it for deployment, make predictions, and take action. Your models get to production faster with much less effort and lower cost. ## Model To create a machine learning model with Amazon Sagemaker, use the `Model` construct. This construct includes properties that can be configured to define model components, including the model inference code as a Docker image and an optional set of separate model data artifacts. See the [AWS documentation](https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-marketplace-develop.html) to learn more about SageMaker models. ### Single Container Model In the event that a single container is sufficient for your inference use-case, you can define a single-container model: ```python import aws_cdk.aws_sagemaker_alpha as sagemaker import path as path image = sagemaker.ContainerImage.from_asset(path.join("path", "to", "Dockerfile", "directory")) model_data = sagemaker.ModelData.from_asset(path.join("path", "to", "artifact", "file.tar.gz")) model = sagemaker.Model(self, "PrimaryContainerModel", containers=[sagemaker.ContainerDefinition( image=image, model_data=model_data ) ] ) ``` ### Inference Pipeline Model An inference pipeline is an Amazon SageMaker model that is composed of a linear sequence of multiple containers that process requests for inferences on data. See the [AWS documentation](https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipelines.html) to learn more about SageMaker inference pipelines. To define an inference pipeline, you can provide additional containers for your model: ```python import aws_cdk.aws_sagemaker_alpha as sagemaker # image1: sagemaker.ContainerImage # model_data1: sagemaker.ModelData # image2: sagemaker.ContainerImage # model_data2: sagemaker.ModelData # image3: sagemaker.ContainerImage # model_data3: sagemaker.ModelData model = sagemaker.Model(self, "InferencePipelineModel", containers=[sagemaker.ContainerDefinition(image=image1, model_data=model_data1), sagemaker.ContainerDefinition(image=image2, model_data=model_data2), sagemaker.ContainerDefinition(image=image3, model_data=model_data3) ] ) ``` ### Container Images Inference code can be stored in the Amazon EC2 Container Registry (Amazon ECR), which is specified via `ContainerDefinition`'s `image` property which accepts a class that extends the `ContainerImage` abstract base class. #### Asset Image Reference a local directory containing a Dockerfile: ```python import aws_cdk.aws_sagemaker_alpha as sagemaker import path as path image = sagemaker.ContainerImage.from_asset(path.join("path", "to", "Dockerfile", "directory")) ``` #### ECR Image Reference an image available within ECR: ```python import aws_cdk.aws_ecr as ecr import aws_cdk.aws_sagemaker_alpha as sagemaker repository = ecr.Repository.from_repository_name(self, "Repository", "repo") image = sagemaker.ContainerImage.from_ecr_repository(repository, "tag") ``` #### DLC Image Reference a deep learning container image: ```python import aws_cdk.aws_sagemaker_alpha as sagemaker repository_name = "huggingface-pytorch-training" tag = "1.13.1-transformers4.26.0-gpu-py39-cu117-ubuntu20.04" image = sagemaker.ContainerImage.from_dlc(repository_name, tag) ``` ### Model Artifacts If you choose to decouple your model artifacts from your inference code (as is natural given different rates of change between inference code and model artifacts), the artifacts can be specified via the `modelData` property which accepts a class that extends the `ModelData` abstract base class. The default is to have no model artifacts associated with a model. #### Asset Model Data Reference local model data: ```python import aws_cdk.aws_sagemaker_alpha as sagemaker import path as path model_data = sagemaker.ModelData.from_asset(path.join("path", "to", "artifact", "file.tar.gz")) ``` #### S3 Model Data Reference an S3 bucket and object key as the artifacts for a model: ```python import aws_cdk.aws_s3 as s3 import aws_cdk.aws_sagemaker_alpha as sagemaker bucket = s3.Bucket(self, "MyBucket") model_data = sagemaker.ModelData.from_bucket(bucket, "path/to/artifact/file.tar.gz") ``` ## Model Hosting Amazon SageMaker provides model hosting services for model deployment. Amazon SageMaker provides an HTTPS endpoint where your machine learning model is available to provide inferences. ### Endpoint Configuration By using the `EndpointConfig` construct, you can define a set of endpoint configuration which can be used to provision one or more endpoints. In this configuration, you identify one or more models to deploy and the resources that you want Amazon SageMaker to provision. You define one or more production variants, each of which identifies a model. Each production variant also describes the resources that you want Amazon SageMaker to provision. If you are hosting multiple models, you also assign a variant weight to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B: ```python import aws_cdk.aws_sagemaker_alpha as sagemaker # model_a: sagemaker.Model # model_b: sagemaker.Model endpoint_config = sagemaker.EndpointConfig(self, "EndpointConfig", instance_production_variants=[sagemaker.InstanceProductionVariantProps( model=model_a, variant_name="modelA", initial_variant_weight=2 ), sagemaker.InstanceProductionVariantProps( model=model_b, variant_name="variantB", initial_variant_weight=1 ) ] ) ``` ### Endpoint When you create an endpoint from an `EndpointConfig`, Amazon SageMaker launches the ML compute instances and deploys the model or models as specified in the configuration. To get inferences from the model, client applications send requests to the Amazon SageMaker Runtime HTTPS endpoint. For more information about the API, see the [InvokeEndpoint](https://docs.aws.amazon.com/sagemaker/latest/dg/API_runtime_InvokeEndpoint.html) API. Defining an endpoint requires at minimum the associated endpoint configuration: ```python import aws_cdk.aws_sagemaker_alpha as sagemaker # endpoint_config: sagemaker.EndpointConfig endpoint = sagemaker.Endpoint(self, "Endpoint", endpoint_config=endpoint_config) ``` ### AutoScaling To enable autoscaling on the production variant, use the `autoScaleInstanceCount` method: ```python import aws_cdk.aws_sagemaker_alpha as sagemaker # model: sagemaker.Model variant_name = "my-variant" endpoint_config = sagemaker.EndpointConfig(self, "EndpointConfig", instance_production_variants=[sagemaker.InstanceProductionVariantProps( model=model, variant_name=variant_name ) ] ) endpoint = sagemaker.Endpoint(self, "Endpoint", endpoint_config=endpoint_config) production_variant = endpoint.find_instance_production_variant(variant_name) instance_count = production_variant.auto_scale_instance_count( max_capacity=3 ) instance_count.scale_on_invocations("LimitRPS", max_requests_per_second=30 ) ``` For load testing guidance on determining the maximum requests per second per instance, please see this [documentation](https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-scaling-loadtest.html). ### Metrics To monitor CloudWatch metrics for a production variant, use one or more of the metric convenience methods: ```python import aws_cdk.aws_sagemaker_alpha as sagemaker # endpoint_config: sagemaker.EndpointConfig endpoint = sagemaker.Endpoint(self, "Endpoint", endpoint_config=endpoint_config) production_variant = endpoint.find_instance_production_variant("my-variant") production_variant.metric_model_latency().create_alarm(self, "ModelLatencyAlarm", threshold=100000, evaluation_periods=3 ) ```


نیازمندی

مقدار نام
==2.78.0 aws-cdk-lib
<11.0.0,>=10.0.0 constructs
<2.0.0,>=1.78.1 jsii
>=0.0.3 publication
~=2.13.3 typeguard


زبان مورد نیاز

مقدار نام
~=3.7 Python


نحوه نصب


نصب پکیج whl aws-cdk.aws-sagemaker-alpha-2.78.0a0:

    pip install aws-cdk.aws-sagemaker-alpha-2.78.0a0.whl


نصب پکیج tar.gz aws-cdk.aws-sagemaker-alpha-2.78.0a0:

    pip install aws-cdk.aws-sagemaker-alpha-2.78.0a0.tar.gz