معرفی شرکت ها


aws-cdk.aws-lambda-1.99.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

The CDK Construct Library for AWS::Lambda
ویژگی مقدار
سیستم عامل -
نام فایل aws-cdk.aws-lambda-1.99.0
نام aws-cdk.aws-lambda
نسخه کتابخانه 1.99.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Amazon Web Services
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/aws/aws-cdk
آدرس اینترنتی https://pypi.org/project/aws-cdk.aws-lambda/
مجوز Apache-2.0
# AWS Lambda Construct Library <!--BEGIN STABILITY BANNER-->--- ![cfn-resources: Stable](https://img.shields.io/badge/cfn--resources-stable-success.svg?style=for-the-badge) ![cdk-constructs: Stable](https://img.shields.io/badge/cdk--constructs-stable-success.svg?style=for-the-badge) --- <!--END STABILITY BANNER--> This construct library allows you to define AWS Lambda Functions. ```python fn = lambda_.Function(self, "MyFunction", runtime=lambda_.Runtime.NODEJS_16_X, handler="index.handler", code=lambda_.Code.from_asset(path.join(__dirname, "lambda-handler")) ) ``` ## Handler Code The `lambda.Code` class includes static convenience methods for various types of runtime code. * `lambda.Code.fromBucket(bucket, key[, objectVersion])` - specify an S3 object that contains the archive of your runtime code. * `lambda.Code.fromInline(code)` - inline the handle code as a string. This is limited to supported runtimes and the code cannot exceed 4KiB. * `lambda.Code.fromAsset(path)` - specify a directory or a .zip file in the local filesystem which will be zipped and uploaded to S3 before deployment. See also [bundling asset code](#bundling-asset-code). * `lambda.Code.fromDockerBuild(path, options)` - use the result of a Docker build as code. The runtime code is expected to be located at `/asset` in the image and will be zipped and uploaded to S3 as an asset. The following example shows how to define a Python function and deploy the code from the local directory `my-lambda-handler` to it: ```python lambda_.Function(self, "MyLambda", code=lambda_.Code.from_asset(path.join(__dirname, "my-lambda-handler")), handler="index.main", runtime=lambda_.Runtime.PYTHON_3_9 ) ``` When deploying a stack that contains this code, the directory will be zip archived and then uploaded to an S3 bucket, then the exact location of the S3 objects will be passed when the stack is deployed. During synthesis, the CDK expects to find a directory on disk at the asset directory specified. Note that we are referencing the asset directory relatively to our CDK project directory. This is especially important when we want to share this construct through a library. Different programming languages will have different techniques for bundling resources into libraries. ## Docker Images Lambda functions allow specifying their handlers within docker images. The docker image can be an image from ECR or a local asset that the CDK will package and load into ECR. The following `DockerImageFunction` construct uses a local folder with a Dockerfile as the asset that will be used as the function handler. ```python lambda_.DockerImageFunction(self, "AssetFunction", code=lambda_.DockerImageCode.from_image_asset(path.join(__dirname, "docker-handler")) ) ``` You can also specify an image that already exists in ECR as the function handler. ```python import aws_cdk.aws_ecr as ecr repo = ecr.Repository(self, "Repository") lambda_.DockerImageFunction(self, "ECRFunction", code=lambda_.DockerImageCode.from_ecr(repo) ) ``` The props for these docker image resources allow overriding the image's `CMD`, `ENTRYPOINT`, and `WORKDIR` configurations as well as choosing a specific tag or digest. See their docs for more information. ## Execution Role Lambda functions assume an IAM role during execution. In CDK by default, Lambda functions will use an autogenerated Role if one is not provided. The autogenerated Role is automatically given permissions to execute the Lambda function. To reference the autogenerated Role: ```python fn = lambda_.Function(self, "MyFunction", runtime=lambda_.Runtime.NODEJS_16_X, handler="index.handler", code=lambda_.Code.from_asset(path.join(__dirname, "lambda-handler")) ) role = fn.role ``` You can also provide your own IAM role. Provided IAM roles will not automatically be given permissions to execute the Lambda function. To provide a role and grant it appropriate permissions: ```python my_role = iam.Role(self, "My Role", assumed_by=iam.ServicePrincipal("lambda.amazonaws.com") ) fn = lambda_.Function(self, "MyFunction", runtime=lambda_.Runtime.NODEJS_16_X, handler="index.handler", code=lambda_.Code.from_asset(path.join(__dirname, "lambda-handler")), role=my_role ) my_role.add_managed_policy(iam.ManagedPolicy.from_aws_managed_policy_name("service-role/AWSLambdaBasicExecutionRole")) my_role.add_managed_policy(iam.ManagedPolicy.from_aws_managed_policy_name("service-role/AWSLambdaVPCAccessExecutionRole")) ``` ## Function Timeout AWS Lambda functions have a default timeout of 3 seconds, but this can be increased up to 15 minutes. The timeout is available as a property of `Function` so that you can reference it elsewhere in your stack. For instance, you could use it to create a CloudWatch alarm to report when your function timed out: ```python import aws_cdk.core as cdk import aws_cdk.aws_cloudwatch as cloudwatch fn = lambda_.Function(self, "MyFunction", runtime=lambda_.Runtime.NODEJS_16_X, handler="index.handler", code=lambda_.Code.from_asset(path.join(__dirname, "lambda-handler")), timeout=cdk.Duration.minutes(5) ) if fn.timeout: cloudwatch.Alarm(self, "MyAlarm", metric=fn.metric_duration().with( statistic="Maximum" ), evaluation_periods=1, datapoints_to_alarm=1, threshold=fn.timeout.to_milliseconds(), treat_missing_data=cloudwatch.TreatMissingData.IGNORE, alarm_name="My Lambda Timeout" ) ``` ## Resource-based Policies AWS Lambda supports resource-based policies for controlling access to Lambda functions and layers on a per-resource basis. In particular, this allows you to give permission to AWS services and other AWS accounts to modify and invoke your functions. You can also restrict permissions given to AWS services by providing a source account or ARN (representing the account and identifier of the resource that accesses the function or layer). ```python # fn: lambda.Function principal = iam.ServicePrincipal("my-service") fn.grant_invoke(principal) # Equivalent to: fn.add_permission("my-service Invocation", principal=principal ) ``` For more information, see [Resource-based policies](https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html) in the AWS Lambda Developer Guide. Providing an unowned principal (such as account principals, generic ARN principals, service principals, and principals in other accounts) to a call to `fn.grantInvoke` will result in a resource-based policy being created. If the principal in question has conditions limiting the source account or ARN of the operation (see above), these conditions will be automatically added to the resource policy. ```python # fn: lambda.Function service_principal = iam.ServicePrincipal("my-service") source_arn = "arn:aws:s3:::my-bucket" source_account = "111122223333" service_principal_with_conditions = service_principal.with_conditions({ "ArnLike": { "aws:SourceArn": source_arn }, "StringEquals": { "aws:SourceAccount": source_account } }) fn.grant_invoke(service_principal_with_conditions) # Equivalent to: fn.add_permission("my-service Invocation", principal=service_principal, source_arn=source_arn, source_account=source_account ) ``` ## Versions You can use [versions](https://docs.aws.amazon.com/lambda/latest/dg/configuration-versions.html) to manage the deployment of your AWS Lambda functions. For example, you can publish a new version of a function for beta testing without affecting users of the stable production version. The function version includes the following information: * The function code and all associated dependencies. * The Lambda runtime that executes the function. * All of the function settings, including the environment variables. * A unique Amazon Resource Name (ARN) to identify this version of the function. You could create a version to your lambda function using the `Version` construct. ```python # fn: lambda.Function version = lambda_.Version(self, "MyVersion", lambda_=fn ) ``` The major caveat to know here is that a function version must always point to a specific 'version' of the function. When the function is modified, the version will continue to point to the 'then version' of the function. One way to ensure that the `lambda.Version` always points to the latest version of your `lambda.Function` is to set an environment variable which changes at least as often as your code does. This makes sure the function always has the latest code. For instance - ```python code_version = "stringOrMethodToGetCodeVersion" fn = lambda_.Function(self, "MyFunction", runtime=lambda_.Runtime.NODEJS_16_X, handler="index.handler", code=lambda_.Code.from_asset(path.join(__dirname, "lambda-handler")), environment={ "CodeVersionString": code_version } ) ``` The `fn.latestVersion` property returns a `lambda.IVersion` which represents the `$LATEST` pseudo-version. However, most AWS services require a specific AWS Lambda version, and won't allow you to use `$LATEST`. Therefore, you would normally want to use `lambda.currentVersion`. The `fn.currentVersion` property can be used to obtain a `lambda.Version` resource that represents the AWS Lambda function defined in your application. Any change to your function's code or configuration will result in the creation of a new version resource. You can specify options for this version through the `currentVersionOptions` property. NOTE: The `currentVersion` property is only supported when your AWS Lambda function uses either `lambda.Code.fromAsset` or `lambda.Code.fromInline`. Other types of code providers (such as `lambda.Code.fromBucket`) require that you define a `lambda.Version` resource directly since the CDK is unable to determine if their contents had changed. ### `currentVersion`: Updated hashing logic To produce a new lambda version each time the lambda function is modified, the `currentVersion` property under the hood, computes a new logical id based on the properties of the function. This informs CloudFormation that a new `AWS::Lambda::Version` resource should be created pointing to the updated Lambda function. However, a bug was introduced in this calculation that caused the logical id to change when it was not required (ex: when the Function's `Tags` property, or when the `DependsOn` clause was modified). This caused the deployment to fail since the Lambda service does not allow creating duplicate versions. This has been fixed in the AWS CDK but *existing* users need to opt-in via a [feature flag](https://docs.aws.amazon.com/cdk/latest/guide/featureflags.html). Users who have run `cdk init` since this fix will be opted in, by default. Otherwise, you will need to enable the [feature flag](https://docs.aws.amazon.com/cdk/latest/guide/featureflags.html) `@aws-cdk/aws-lambda:recognizeVersionProps`. Since CloudFormation does not allow duplicate versions, you will also need to make some modification to your function so that a new version can be created. To efficiently and trivially modify all your lambda functions at once, you can attach the `FunctionVersionUpgrade` aspect to the stack, which slightly alters the function description. This aspect is intended for one-time use to upgrade the version of all your functions at the same time, and can safely be removed after deploying once. ```python stack = Stack() Aspects.of(stack).add(lambda_.FunctionVersionUpgrade(LAMBDA_RECOGNIZE_VERSION_PROPS)) ``` When the new logic is in effect, you may rarely come across the following error: `The following properties are not recognized as version properties`. This will occur, typically when [property overrides](https://docs.aws.amazon.com/cdk/latest/guide/cfn_layer.html#cfn_layer_raw) are used, when a new property introduced in `AWS::Lambda::Function` is used that CDK is still unaware of. To overcome this error, use the API `Function.classifyVersionProperty()` to record whether a new version should be generated when this property is changed. This can be typically determined by checking whether the property can be modified using the *[UpdateFunctionConfiguration](https://docs.aws.amazon.com/lambda/latest/dg/API_UpdateFunctionConfiguration.html)* API or not. ### `currentVersion`: Updated hashing logic for layer versions An additional update to the hashing logic fixes two issues surrounding layers. Prior to this change, updating the lambda layer version would have no effect on the function version. Also, the order of lambda layers provided to the function was unnecessarily baked into the hash. This has been fixed in the AWS CDK starting with version 2.27. If you ran `cdk init` with an earlier version, you will need to opt-in via a [feature flag](https://docs.aws.amazon.com/cdk/latest/guide/featureflags.html). If you run `cdk init` with v2.27 or later, this fix will be opted in, by default. Existing users will need to enable the [feature flag](https://docs.aws.amazon.com/cdk/latest/guide/featureflags.html) `@aws-cdk/aws-lambda:recognizeLayerVersion`. Since CloudFormation does not allow duplicate versions, they will also need to make some modification to their function so that a new version can be created. To efficiently and trivially modify all your lambda functions at once, users can attach the `FunctionVersionUpgrade` aspect to the stack, which slightly alters the function description. This aspect is intended for one-time use to upgrade the version of all your functions at the same time, and can safely be removed after deploying once. ```python stack = Stack() Aspects.of(stack).add(lambda_.FunctionVersionUpgrade(LAMBDA_RECOGNIZE_LAYER_VERSION)) ``` ## Aliases You can define one or more [aliases](https://docs.aws.amazon.com/lambda/latest/dg/configuration-aliases.html) for your AWS Lambda function. A Lambda alias is like a pointer to a specific Lambda function version. Users can access the function version using the alias ARN. The `version.addAlias()` method can be used to define an AWS Lambda alias that points to a specific version. The following example defines an alias named `live` which will always point to a version that represents the function as defined in your CDK app. When you change your lambda code or configuration, a new resource will be created. You can specify options for the current version through the `currentVersionOptions` property. ```python fn = lambda_.Function(self, "MyFunction", current_version_options=lambda.VersionOptions( removal_policy=RemovalPolicy.RETAIN, # retain old versions retry_attempts=1 ), runtime=lambda_.Runtime.NODEJS_16_X, handler="index.handler", code=lambda_.Code.from_asset(path.join(__dirname, "lambda-handler")) ) fn.add_alias("live") ``` ## Function URL A function URL is a dedicated HTTP(S) endpoint for your Lambda function. When you create a function URL, Lambda automatically generates a unique URL endpoint for you. Function URLs can be created for the latest version Lambda Functions, or Function Aliases (but not for Versions). Function URLs are dual stack-enabled, supporting IPv4 and IPv6, and cross-origin resource sharing (CORS) configuration. After you configure a function URL for your function, you can invoke your function through its HTTP(S) endpoint via a web browser, curl, Postman, or any HTTP client. To invoke a function using IAM authentication your HTTP client must support SigV4 signing. See the [Invoking Function URLs](https://docs.aws.amazon.com/lambda/latest/dg/urls-invocation.html) section of the AWS Lambda Developer Guide for more information on the input and output payloads of Functions invoked in this way. ### IAM-authenticated Function URLs To create a Function URL which can be called by an IAM identity, call `addFunctionUrl()`, followed by `grantInvokeFunctionUrl()`: ```python # Can be a Function or an Alias # fn: lambda.Function # my_role: iam.Role fn_url = fn.add_function_url() fn_url.grant_invoke_url(my_role) CfnOutput(self, "TheUrl", # The .url attributes will return the unique Function URL value=fn_url.url ) ``` Calls to this URL need to be signed with SigV4. ### Anonymous Function URLs To create a Function URL which can be called anonymously, pass `authType: FunctionUrlAuthType.NONE` to `addFunctionUrl()`: ```python # Can be a Function or an Alias # fn: lambda.Function fn_url = fn.add_function_url( auth_type=lambda_.FunctionUrlAuthType.NONE ) CfnOutput(self, "TheUrl", value=fn_url.url ) ``` ### CORS configuration for Function URLs If you want your Function URLs to be invokable from a web page in browser, you will need to configure cross-origin resource sharing to allow the call (if you do not do this, your browser will refuse to make the call): ```python # fn: lambda.Function fn.add_function_url( auth_type=lambda_.FunctionUrlAuthType.NONE, cors=lambda.FunctionUrlCorsOptions( # Allow this to be called from websites on https://example.com. # Can also be ['*'] to allow all domain. allowed_origins=["https://example.com"] ) ) ``` ## Layers The `lambda.LayerVersion` class can be used to define Lambda layers and manage granting permissions to other AWS accounts or organizations. ```python layer = lambda_.LayerVersion(stack, "MyLayer", code=lambda_.Code.from_asset(path.join(__dirname, "layer-code")), compatible_runtimes=[lambda_.Runtime.NODEJS_14_X], license="Apache-2.0", description="A layer to test the L2 construct" ) # To grant usage by other AWS accounts layer.add_permission("remote-account-grant", account_id=aws_account_id) # To grant usage to all accounts in some AWS Ogranization # layer.grantUsage({ accountId: '*', organizationId }); lambda_.Function(stack, "MyLayeredLambda", code=lambda_.InlineCode("foo"), handler="index.handler", runtime=lambda_.Runtime.NODEJS_14_X, layers=[layer] ) ``` By default, updating a layer creates a new layer version, and CloudFormation will delete the old version as part of the stack update. Alternatively, a removal policy can be used to retain the old version: ```python lambda_.LayerVersion(self, "MyLayer", removal_policy=RemovalPolicy.RETAIN, code=lambda_.Code.from_asset(path.join(__dirname, "lambda-handler")) ) ``` ## Architecture Lambda functions, by default, run on compute systems that have the 64 bit x86 architecture. The AWS Lambda service also runs compute on the ARM architecture, which can reduce cost for some workloads. A lambda function can be configured to be run on one of these platforms: ```python lambda_.Function(self, "MyFunction", runtime=lambda_.Runtime.NODEJS_16_X, handler="index.handler", code=lambda_.Code.from_asset(path.join(__dirname, "lambda-handler")), architecture=lambda_.Architecture.ARM_64 ) ``` Similarly, lambda layer versions can also be tagged with architectures it is compatible with. ```python lambda_.LayerVersion(self, "MyLayer", removal_policy=RemovalPolicy.RETAIN, code=lambda_.Code.from_asset(path.join(__dirname, "lambda-handler")), compatible_architectures=[lambda_.Architecture.X86_64, lambda_.Architecture.ARM_64] ) ``` ## Lambda Insights Lambda functions can be configured to use CloudWatch [Lambda Insights](https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Lambda-Insights.html) which provides low-level runtime metrics for a Lambda functions. ```python lambda_.Function(self, "MyFunction", runtime=lambda_.Runtime.NODEJS_16_X, handler="index.handler", code=lambda_.Code.from_asset(path.join(__dirname, "lambda-handler")), insights_version=lambda_.LambdaInsightsVersion.VERSION_1_0_98_0 ) ``` If the version of insights is not yet available in the CDK, you can also provide the ARN directly as so - ```python layer_arn = "arn:aws:lambda:us-east-1:580247275435:layer:LambdaInsightsExtension:14" lambda_.Function(self, "MyFunction", runtime=lambda_.Runtime.NODEJS_16_X, handler="index.handler", code=lambda_.Code.from_asset(path.join(__dirname, "lambda-handler")), insights_version=lambda_.LambdaInsightsVersion.from_insight_version_arn(layer_arn) ) ``` If you are deploying an ARM_64 Lambda Function, you must specify a Lambda Insights Version >= `1_0_119_0`. ```python lambda_.Function(self, "MyFunction", runtime=lambda_.Runtime.NODEJS_16_X, handler="index.handler", architecture=lambda_.Architecture.ARM_64, code=lambda_.Code.from_asset(path.join(__dirname, "lambda-handler")), insights_version=lambda_.LambdaInsightsVersion.VERSION_1_0_119_0 ) ``` ## Event Rule Target You can use an AWS Lambda function as a target for an Amazon CloudWatch event rule: ```python import aws_cdk.aws_events as events import aws_cdk.aws_events_targets as targets # fn: lambda.Function rule = events.Rule(self, "Schedule Rule", schedule=events.Schedule.cron(minute="0", hour="4") ) rule.add_target(targets.LambdaFunction(fn)) ``` ## Event Sources AWS Lambda supports a [variety of event sources](https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html). In most cases, it is possible to trigger a function as a result of an event by using one of the `add<Event>Notification` methods on the source construct. For example, the `s3.Bucket` construct has an `onEvent` method which can be used to trigger a Lambda when an event, such as PutObject occurs on an S3 bucket. An alternative way to add event sources to a function is to use `function.addEventSource(source)`. This method accepts an `IEventSource` object. The module **@aws-cdk/aws-lambda-event-sources** includes classes for the various event sources supported by AWS Lambda. For example, the following code adds an SQS queue as an event source for a function: ```python import aws_cdk.aws_lambda_event_sources as eventsources import aws_cdk.aws_sqs as sqs # fn: lambda.Function queue = sqs.Queue(self, "Queue") fn.add_event_source(eventsources.SqsEventSource(queue)) ``` The following code adds an S3 bucket notification as an event source: ```python import aws_cdk.aws_lambda_event_sources as eventsources import aws_cdk.aws_s3 as s3 # fn: lambda.Function bucket = s3.Bucket(self, "Bucket") fn.add_event_source(eventsources.S3EventSource(bucket, events=[s3.EventType.OBJECT_CREATED, s3.EventType.OBJECT_REMOVED], filters=[s3.NotificationKeyFilter(prefix="subdir/")] )) ``` See the documentation for the **@aws-cdk/aws-lambda-event-sources** module for more details. ## Imported Lambdas When referencing an imported lambda in the CDK, use `fromFunctionArn()` for most use cases: ```python fn = lambda_.Function.from_function_arn(self, "Function", "arn:aws:lambda:us-east-1:123456789012:function:MyFn") ``` The `fromFunctionAttributes()` API is available for more specific use cases: ```python fn = lambda_.Function.from_function_attributes(self, "Function", function_arn="arn:aws:lambda:us-east-1:123456789012:function:MyFn", # The following are optional properties for specific use cases and should be used with caution: # Use Case: imported function is in the same account as the stack. This tells the CDK that it # can modify the function's permissions. same_environment=True, # Use Case: imported function is in a different account and user commits to ensuring that the # imported function has the correct permissions outside the CDK. skip_permissions=True ) ``` If `fromFunctionArn()` causes an error related to having to provide an account and/or region in a different construct, and the lambda is in the same account and region as the stack you're importing it into, you can use `Function.fromFunctionName()` instead: ```python fn = lambda_.Function.from_function_name(self, "Function", "MyFn") ``` ## Lambda with DLQ A dead-letter queue can be automatically created for a Lambda function by setting the `deadLetterQueueEnabled: true` configuration. In such case CDK creates a `sqs.Queue` as `deadLetterQueue`. ```python fn = lambda_.Function(self, "MyFunction", runtime=lambda_.Runtime.NODEJS_16_X, handler="index.handler", code=lambda_.Code.from_inline("exports.handler = function(event, ctx, cb) { return cb(null, \"hi\"); }"), dead_letter_queue_enabled=True ) ``` It is also possible to provide a dead-letter queue instead of getting a new queue created: ```python import aws_cdk.aws_sqs as sqs dlq = sqs.Queue(self, "DLQ") fn = lambda_.Function(self, "MyFunction", runtime=lambda_.Runtime.NODEJS_16_X, handler="index.handler", code=lambda_.Code.from_inline("exports.handler = function(event, ctx, cb) { return cb(null, \"hi\"); }"), dead_letter_queue=dlq ) ``` You can also use a `sns.Topic` instead of an `sqs.Queue` as dead-letter queue: ```python import aws_cdk.aws_sns as sns dlt = sns.Topic(self, "DLQ") fn = lambda_.Function(self, "MyFunction", runtime=lambda_.Runtime.NODEJS_16_X, handler="index.handler", code=lambda_.Code.from_inline("// your code here"), dead_letter_topic=dlt ) ``` See [the AWS documentation](https://docs.aws.amazon.com/lambda/latest/dg/dlq.html) to learn more about AWS Lambdas and DLQs. ## Lambda with X-Ray Tracing ```python fn = lambda_.Function(self, "MyFunction", runtime=lambda_.Runtime.NODEJS_16_X, handler="index.handler", code=lambda_.Code.from_inline("exports.handler = function(event, ctx, cb) { return cb(null, \"hi\"); }"), tracing=lambda_.Tracing.ACTIVE ) ``` See [the AWS documentation](https://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html) to learn more about AWS Lambda's X-Ray support. ## Lambda with Profiling The following code configures the lambda function with CodeGuru profiling. By default, this creates a new CodeGuru profiling group - ```python fn = lambda_.Function(self, "MyFunction", runtime=lambda_.Runtime.PYTHON_3_9, handler="index.handler", code=lambda_.Code.from_asset("lambda-handler"), profiling=True ) ``` The `profilingGroup` property can be used to configure an existing CodeGuru profiler group. CodeGuru profiling is supported for all Java runtimes and Python3.6+ runtimes. See [the AWS documentation](https://docs.aws.amazon.com/codeguru/latest/profiler-ug/setting-up-lambda.html) to learn more about AWS Lambda's Profiling support. ## Lambda with Reserved Concurrent Executions ```python fn = lambda_.Function(self, "MyFunction", runtime=lambda_.Runtime.NODEJS_16_X, handler="index.handler", code=lambda_.Code.from_inline("exports.handler = function(event, ctx, cb) { return cb(null, \"hi\"); }"), reserved_concurrent_executions=100 ) ``` See [the AWS documentation](https://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html) managing concurrency. ## AutoScaling You can use Application AutoScaling to automatically configure the provisioned concurrency for your functions. AutoScaling can be set to track utilization or be based on a schedule. To configure AutoScaling on a function alias: ```python import aws_cdk.aws_autoscaling as autoscaling # fn: lambda.Function alias = fn.add_alias("prod") # Create AutoScaling target as = alias.add_auto_scaling(max_capacity=50) # Configure Target Tracking as.scale_on_utilization( utilization_target=0.5 ) # Configure Scheduled Scaling as.scale_on_schedule("ScaleUpInTheMorning", schedule=autoscaling.Schedule.cron(hour="8", minute="0"), min_capacity=20 ) ``` ```python import aws_cdk.aws_applicationautoscaling as appscaling import aws_cdk.core as cdk from aws_cdk.cx_api import LAMBDA_RECOGNIZE_LAYER_VERSION import aws_cdk.aws_lambda as lambda_ # # Stack verification steps: # aws application-autoscaling describe-scalable-targets --service-namespace lambda --resource-ids function:<function name>:prod # has a minCapacity of 3 and maxCapacity of 50 # class TestStack(cdk.Stack): def __init__(self, scope, id): super().__init__(scope, id) fn = lambda_.Function(self, "MyLambda", code=lambda_.InlineCode("exports.handler = async () => { console.log('hello world'); };"), handler="index.handler", runtime=lambda_.Runtime.NODEJS_14_X ) version = fn.current_version alias = lambda_.Alias(self, "Alias", alias_name="prod", version=version ) scaling_target = alias.add_auto_scaling(min_capacity=3, max_capacity=50) scaling_target.scale_on_utilization( utilization_target=0.5 ) scaling_target.scale_on_schedule("ScaleUpInTheMorning", schedule=appscaling.Schedule.cron(hour="8", minute="0"), min_capacity=20 ) scaling_target.scale_on_schedule("ScaleDownAtNight", schedule=appscaling.Schedule.cron(hour="20", minute="0"), max_capacity=20 ) cdk.CfnOutput(self, "FunctionName", value=fn.function_name ) app = cdk.App() stack = TestStack(app, "aws-lambda-autoscaling") # Changes the function description when the feature flag is present # to validate the changed function hash. cdk.Aspects.of(stack).add(lambda_.FunctionVersionUpgrade(LAMBDA_RECOGNIZE_LAYER_VERSION)) app.synth() ``` See [the AWS documentation](https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html) on autoscaling lambda functions. ## Log Group Lambda functions automatically create a log group with the name `/aws/lambda/<function-name>` upon first execution with log data set to never expire. The `logRetention` property can be used to set a different expiration period. It is possible to obtain the function's log group as a `logs.ILogGroup` by calling the `logGroup` property of the `Function` construct. By default, CDK uses the AWS SDK retry options when creating a log group. The `logRetentionRetryOptions` property allows you to customize the maximum number of retries and base backoff duration. *Note* that, if either `logRetention` is set or `logGroup` property is called, a [CloudFormation custom resource](https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cfn-customresource.html) is added to the stack that pre-creates the log group as part of the stack deployment, if it already doesn't exist, and sets the correct log retention period (never expire, by default). *Further note* that, if the log group already exists and the `logRetention` is not set, the custom resource will reset the log retention to never expire even if it was configured with a different value. ## FileSystem Access You can configure a function to mount an Amazon Elastic File System (Amazon EFS) to a directory in your runtime environment with the `filesystem` property. To access Amazon EFS from lambda function, the Amazon EFS access point will be required. The following sample allows the lambda function to mount the Amazon EFS access point to `/mnt/msg` in the runtime environment and access the filesystem with the POSIX identity defined in `posixUser`. ```python import aws_cdk.aws_ec2 as ec2 import aws_cdk.aws_efs as efs # create a new VPC vpc = ec2.Vpc(self, "VPC") # create a new Amazon EFS filesystem file_system = efs.FileSystem(self, "Efs", vpc=vpc) # create a new access point from the filesystem access_point = file_system.add_access_point("AccessPoint", # set /export/lambda as the root of the access point path="/export/lambda", # as /export/lambda does not exist in a new efs filesystem, the efs will create the directory with the following createAcl create_acl=efs.Acl( owner_uid="1001", owner_gid="1001", permissions="750" ), # enforce the POSIX identity so lambda function will access with this identity posix_user=efs.PosixUser( uid="1001", gid="1001" ) ) fn = lambda_.Function(self, "MyLambda", # mount the access point to /mnt/msg in the lambda runtime environment filesystem=lambda_.FileSystem.from_efs_access_point(access_point, "/mnt/msg"), runtime=lambda_.Runtime.NODEJS_16_X, handler="index.handler", code=lambda_.Code.from_asset(path.join(__dirname, "lambda-handler")), vpc=vpc ) ``` ## Ephemeral Storage You can configure ephemeral storage on a function to control the amount of storage it gets for reading or writing data, allowing you to use AWS Lambda for ETL jobs, ML inference, or other data-intensive workloads. The ephemeral storage will be accessible in the functions' `/tmp` directory. ```python from aws_cdk.core import Size fn = lambda_.Function(self, "MyFunction", runtime=lambda_.Runtime.NODEJS_16_X, handler="index.handler", code=lambda_.Code.from_asset(path.join(__dirname, "lambda-handler")), ephemeral_storage_size=Size.mebibytes(1024) ) ``` Read more about using this feature in [this AWS blog post](https://aws.amazon.com/blogs/aws/aws-lambda-now-supports-up-to-10-gb-ephemeral-storage/). ## Singleton Function The `SingletonFunction` construct is a way to guarantee that a lambda function will be guaranteed to be part of the stack, once and only once, irrespective of how many times the construct is declared to be part of the stack. This is guaranteed as long as the `uuid` property and the optional `lambdaPurpose` property stay the same whenever they're declared into the stack. A typical use case of this function is when a higher level construct needs to declare a Lambda function as part of it but needs to guarantee that the function is declared once. However, a user of this higher level construct can declare it any number of times and with different properties. Using `SingletonFunction` here with a fixed `uuid` will guarantee this. For example, the `LogRetention` construct requires only one single lambda function for all different log groups whose retention it seeks to manage. ## Bundling Asset Code When using `lambda.Code.fromAsset(path)` it is possible to bundle the code by running a command in a Docker container. The asset path will be mounted at `/asset-input`. The Docker container is responsible for putting content at `/asset-output`. The content at `/asset-output` will be zipped and used as Lambda code. Example with Python: ```python lambda_.Function(self, "Function", code=lambda_.Code.from_asset(path.join(__dirname, "my-python-handler"), bundling=BundlingOptions( image=lambda_.Runtime.PYTHON_3_9.bundling_image, command=["bash", "-c", "pip install -r requirements.txt -t /asset-output && cp -au . /asset-output" ] ) ), runtime=lambda_.Runtime.PYTHON_3_9, handler="index.handler" ) ``` Runtimes expose a `bundlingImage` property that points to the [AWS SAM](https://github.com/awslabs/aws-sam-cli) build image. Use `cdk.DockerImage.fromRegistry(image)` to use an existing image or `cdk.DockerImage.fromBuild(path)` to build a specific image: ```python lambda_.Function(self, "Function", code=lambda_.Code.from_asset("/path/to/handler", bundling=BundlingOptions( image=DockerImage.from_build("/path/to/dir/with/DockerFile", build_args={ "ARG1": "value1" } ), command=["my", "cool", "command"] ) ), runtime=lambda_.Runtime.PYTHON_3_9, handler="index.handler" ) ``` ## Language-specific APIs Language-specific higher level constructs are provided in separate modules: * `@aws-cdk/aws-lambda-nodejs`: [Github](https://github.com/aws/aws-cdk/tree/master/packages/%40aws-cdk/aws-lambda-nodejs) & [CDK Docs](https://docs.aws.amazon.com/cdk/api/latest/docs/aws-lambda-nodejs-readme.html) * `@aws-cdk/aws-lambda-python`: [Github](https://github.com/aws/aws-cdk/tree/master/packages/%40aws-cdk/aws-lambda-python) & [CDK Docs](https://docs.aws.amazon.com/cdk/api/latest/docs/aws-lambda-python-readme.html) ## Code Signing Code signing for AWS Lambda helps to ensure that only trusted code runs in your Lambda functions. When enabled, AWS Lambda checks every code deployment and verifies that the code package is signed by a trusted source. For more information, see [Configuring code signing for AWS Lambda](https://docs.aws.amazon.com/lambda/latest/dg/configuration-codesigning.html). The following code configures a function with code signing. ```python import aws_cdk.aws_signer as signer signing_profile = signer.SigningProfile(self, "SigningProfile", platform=signer.Platform.AWS_LAMBDA_SHA384_ECDSA ) code_signing_config = lambda_.CodeSigningConfig(self, "CodeSigningConfig", signing_profiles=[signing_profile] ) lambda_.Function(self, "Function", code_signing_config=code_signing_config, runtime=lambda_.Runtime.NODEJS_16_X, handler="index.handler", code=lambda_.Code.from_asset(path.join(__dirname, "lambda-handler")) ) ```


نیازمندی

مقدار نام
==1.200.0 aws-cdk.aws-applicationautoscaling
==1.200.0 aws-cdk.aws-cloudwatch
==1.200.0 aws-cdk.aws-codeguruprofiler
==1.200.0 aws-cdk.aws-ec2
==1.200.0 aws-cdk.aws-ecr-assets
==1.200.0 aws-cdk.aws-ecr
==1.200.0 aws-cdk.aws-efs
==1.200.0 aws-cdk.aws-events
==1.200.0 aws-cdk.aws-iam
==1.200.0 aws-cdk.aws-kms
==1.200.0 aws-cdk.aws-logs
==1.200.0 aws-cdk.aws-s3-assets
==1.200.0 aws-cdk.aws-s3
==1.200.0 aws-cdk.aws-signer
==1.200.0 aws-cdk.aws-sns
==1.200.0 aws-cdk.aws-sqs
==1.200.0 aws-cdk.core
==1.200.0 aws-cdk.cx-api
==1.200.0 aws-cdk.region-info
<4.0.0,>=3.3.69 constructs
<2.0.0,>=1.74.0 jsii
>=0.0.3 publication
~=2.13.3 typeguard


زبان مورد نیاز

مقدار نام
~=3.7 Python


نحوه نصب


نصب پکیج whl aws-cdk.aws-lambda-1.99.0:

    pip install aws-cdk.aws-lambda-1.99.0.whl


نصب پکیج tar.gz aws-cdk.aws-lambda-1.99.0:

    pip install aws-cdk.aws-lambda-1.99.0.tar.gz