معرفی شرکت ها


aws-cdk.aws-ecs-patterns-1.99.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

The CDK Construct Library for AWS::ECS
ویژگی مقدار
سیستم عامل -
نام فایل aws-cdk.aws-ecs-patterns-1.99.0
نام aws-cdk.aws-ecs-patterns
نسخه کتابخانه 1.99.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Amazon Web Services
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/aws/aws-cdk
آدرس اینترنتی https://pypi.org/project/aws-cdk.aws-ecs-patterns/
مجوز Apache-2.0
# CDK Construct library for higher-level ECS Constructs <!--BEGIN STABILITY BANNER-->--- ![cdk-constructs: Stable](https://img.shields.io/badge/cdk--constructs-stable-success.svg?style=for-the-badge) --- <!--END STABILITY BANNER--> This library provides higher-level Amazon ECS constructs which follow common architectural patterns. It contains: * Application Load Balanced Services * Network Load Balanced Services * Queue Processing Services * Scheduled Tasks (cron jobs) * Additional Examples ## Application Load Balanced Services To define an Amazon ECS service that is behind an application load balancer, instantiate one of the following: * `ApplicationLoadBalancedEc2Service` ```python # cluster: ecs.Cluster load_balanced_ecs_service = ecs_patterns.ApplicationLoadBalancedEc2Service(self, "Service", cluster=cluster, memory_limit_mi_b=1024, task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions( image=ecs.ContainerImage.from_registry("test"), environment={ "TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value", "TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value" } ), desired_count=2 ) ``` * `ApplicationLoadBalancedFargateService` ```python # cluster: ecs.Cluster load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service", cluster=cluster, memory_limit_mi_b=1024, cpu=512, task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions( image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample") ) ) load_balanced_fargate_service.target_group.configure_health_check( path="/custom-health-path" ) ``` Instead of providing a cluster you can specify a VPC and CDK will create a new ECS cluster. If you deploy multiple services CDK will only create one cluster per VPC. You can omit `cluster` and `vpc` to let CDK create a new VPC with two AZs and create a cluster inside this VPC. You can customize the health check for your target group; otherwise it defaults to `HTTP` over port `80` hitting path `/`. Fargate services will use the `LATEST` platform version by default, but you can override by providing a value for the `platformVersion` property in the constructor. Fargate services use the default VPC Security Group unless one or more are provided using the `securityGroups` property in the constructor. By setting `redirectHTTP` to true, CDK will automatically create a listener on port 80 that redirects HTTP traffic to the HTTPS port. If you specify the option `recordType` you can decide if you want the construct to use CNAME or Route53-Aliases as record sets. If you need to encrypt the traffic between the load balancer and the ECS tasks, you can set the `targetProtocol` to `HTTPS`. Additionally, if more than one application target group are needed, instantiate one of the following: * `ApplicationMultipleTargetGroupsEc2Service` ```python # One application load balancer with one listener and two target groups. # cluster: ecs.Cluster load_balanced_ec2_service = ecs_patterns.ApplicationMultipleTargetGroupsEc2Service(self, "Service", cluster=cluster, memory_limit_mi_b=256, task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageProps( image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample") ), target_groups=[ecsPatterns.ApplicationTargetProps( container_port=80 ), ecsPatterns.ApplicationTargetProps( container_port=90, path_pattern="a/b/c", priority=10 ) ] ) ``` * `ApplicationMultipleTargetGroupsFargateService` ```python # One application load balancer with one listener and two target groups. # cluster: ecs.Cluster load_balanced_fargate_service = ecs_patterns.ApplicationMultipleTargetGroupsFargateService(self, "Service", cluster=cluster, memory_limit_mi_b=1024, cpu=512, task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageProps( image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample") ), target_groups=[ecsPatterns.ApplicationTargetProps( container_port=80 ), ecsPatterns.ApplicationTargetProps( container_port=90, path_pattern="a/b/c", priority=10 ) ] ) ``` ## Network Load Balanced Services To define an Amazon ECS service that is behind a network load balancer, instantiate one of the following: * `NetworkLoadBalancedEc2Service` ```python # cluster: ecs.Cluster load_balanced_ecs_service = ecs_patterns.NetworkLoadBalancedEc2Service(self, "Service", cluster=cluster, memory_limit_mi_b=1024, task_image_options=ecsPatterns.NetworkLoadBalancedTaskImageOptions( image=ecs.ContainerImage.from_registry("test"), environment={ "TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value", "TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value" } ), desired_count=2 ) ``` * `NetworkLoadBalancedFargateService` ```python # cluster: ecs.Cluster load_balanced_fargate_service = ecs_patterns.NetworkLoadBalancedFargateService(self, "Service", cluster=cluster, memory_limit_mi_b=1024, cpu=512, task_image_options=ecsPatterns.NetworkLoadBalancedTaskImageOptions( image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample") ) ) ``` The CDK will create a new Amazon ECS cluster if you specify a VPC and omit `cluster`. If you deploy multiple services the CDK will only create one cluster per VPC. If `cluster` and `vpc` are omitted, the CDK creates a new VPC with subnets in two Availability Zones and a cluster within this VPC. If you specify the option `recordType` you can decide if you want the construct to use CNAME or Route53-Aliases as record sets. Additionally, if more than one network target group is needed, instantiate one of the following: * NetworkMultipleTargetGroupsEc2Service ```python # Two network load balancers, each with their own listener and target group. # cluster: ecs.Cluster load_balanced_ec2_service = ecs_patterns.NetworkMultipleTargetGroupsEc2Service(self, "Service", cluster=cluster, memory_limit_mi_b=256, task_image_options=ecsPatterns.NetworkLoadBalancedTaskImageProps( image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample") ), load_balancers=[ecsPatterns.NetworkLoadBalancerProps( name="lb1", listeners=[ecsPatterns.NetworkListenerProps( name="listener1" ) ] ), ecsPatterns.NetworkLoadBalancerProps( name="lb2", listeners=[ecsPatterns.NetworkListenerProps( name="listener2" ) ] ) ], target_groups=[ecsPatterns.NetworkTargetProps( container_port=80, listener="listener1" ), ecsPatterns.NetworkTargetProps( container_port=90, listener="listener2" ) ] ) ``` * NetworkMultipleTargetGroupsFargateService ```python # Two network load balancers, each with their own listener and target group. # cluster: ecs.Cluster load_balanced_fargate_service = ecs_patterns.NetworkMultipleTargetGroupsFargateService(self, "Service", cluster=cluster, memory_limit_mi_b=512, task_image_options=ecsPatterns.NetworkLoadBalancedTaskImageProps( image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample") ), load_balancers=[ecsPatterns.NetworkLoadBalancerProps( name="lb1", listeners=[ecsPatterns.NetworkListenerProps( name="listener1" ) ] ), ecsPatterns.NetworkLoadBalancerProps( name="lb2", listeners=[ecsPatterns.NetworkListenerProps( name="listener2" ) ] ) ], target_groups=[ecsPatterns.NetworkTargetProps( container_port=80, listener="listener1" ), ecsPatterns.NetworkTargetProps( container_port=90, listener="listener2" ) ] ) ``` ## Queue Processing Services To define a service that creates a queue and reads from that queue, instantiate one of the following: * `QueueProcessingEc2Service` ```python # cluster: ecs.Cluster queue_processing_ec2_service = ecs_patterns.QueueProcessingEc2Service(self, "Service", cluster=cluster, memory_limit_mi_b=1024, image=ecs.ContainerImage.from_registry("test"), command=["-c", "4", "amazon.com"], enable_logging=False, desired_task_count=2, environment={ "TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value", "TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value" }, max_scaling_capacity=5, container_name="test" ) ``` * `QueueProcessingFargateService` ```python # cluster: ecs.Cluster queue_processing_fargate_service = ecs_patterns.QueueProcessingFargateService(self, "Service", cluster=cluster, memory_limit_mi_b=512, image=ecs.ContainerImage.from_registry("test"), command=["-c", "4", "amazon.com"], enable_logging=False, desired_task_count=2, environment={ "TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value", "TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value" }, max_scaling_capacity=5, container_name="test" ) ``` when queue not provided by user, CDK will create a primary queue and a dead letter queue with default redrive policy and attach permission to the task to be able to access the primary queue. ## Scheduled Tasks To define a task that runs periodically, there are 2 options: * `ScheduledEc2Task` ```python # Instantiate an Amazon EC2 Task to run at a scheduled interval # cluster: ecs.Cluster ecs_scheduled_task = ecs_patterns.ScheduledEc2Task(self, "ScheduledTask", cluster=cluster, scheduled_ec2_task_image_options=ecsPatterns.ScheduledEc2TaskImageOptions( image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"), memory_limit_mi_b=256, environment={"name": "TRIGGER", "value": "CloudWatch Events"} ), schedule=appscaling.Schedule.expression("rate(1 minute)"), enabled=True, rule_name="sample-scheduled-task-rule" ) ``` * `ScheduledFargateTask` ```python # cluster: ecs.Cluster scheduled_fargate_task = ecs_patterns.ScheduledFargateTask(self, "ScheduledFargateTask", cluster=cluster, scheduled_fargate_task_image_options=ecsPatterns.ScheduledFargateTaskImageOptions( image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"), memory_limit_mi_b=512 ), schedule=appscaling.Schedule.expression("rate(1 minute)"), platform_version=ecs.FargatePlatformVersion.LATEST ) ``` ## Additional Examples In addition to using the constructs, users can also add logic to customize these constructs: ### Configure HTTPS on an ApplicationLoadBalancedFargateService ```python from aws_cdk.aws_route53 import HostedZone from aws_cdk.aws_certificatemanager import Certificate from aws_cdk.aws_elasticloadbalancingv2 import SslPolicy # vpc: ec2.Vpc # cluster: ecs.Cluster domain_zone = HostedZone.from_lookup(self, "Zone", domain_name="example.com") certificate = Certificate.from_certificate_arn(self, "Cert", "arn:aws:acm:us-east-1:123456:certificate/abcdefg") load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service", vpc=vpc, cluster=cluster, certificate=certificate, ssl_policy=SslPolicy.RECOMMENDED, domain_name="api.example.com", domain_zone=domain_zone, redirect_hTTP=True, task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions( image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample") ) ) ``` ### Add Schedule-Based Auto-Scaling to an ApplicationLoadBalancedFargateService ```python # cluster: ecs.Cluster load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service", cluster=cluster, memory_limit_mi_b=1024, desired_count=1, cpu=512, task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions( image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample") ) ) scalable_target = load_balanced_fargate_service.service.auto_scale_task_count( min_capacity=5, max_capacity=20 ) scalable_target.scale_on_schedule("DaytimeScaleDown", schedule=appscaling.Schedule.cron(hour="8", minute="0"), min_capacity=1 ) scalable_target.scale_on_schedule("EveningRushScaleUp", schedule=appscaling.Schedule.cron(hour="20", minute="0"), min_capacity=10 ) ``` ### Add Metric-Based Auto-Scaling to an ApplicationLoadBalancedFargateService ```python # cluster: ecs.Cluster load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service", cluster=cluster, memory_limit_mi_b=1024, desired_count=1, cpu=512, task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions( image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample") ) ) scalable_target = load_balanced_fargate_service.service.auto_scale_task_count( min_capacity=1, max_capacity=20 ) scalable_target.scale_on_cpu_utilization("CpuScaling", target_utilization_percent=50 ) scalable_target.scale_on_memory_utilization("MemoryScaling", target_utilization_percent=50 ) ``` ### Change the default Deployment Controller ```python # cluster: ecs.Cluster load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service", cluster=cluster, memory_limit_mi_b=1024, desired_count=1, cpu=512, task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions( image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample") ), deployment_controller=ecs.DeploymentController( type=ecs.DeploymentControllerType.CODE_DEPLOY ) ) ``` ### Deployment circuit breaker and rollback Amazon ECS [deployment circuit breaker](https://aws.amazon.com/tw/blogs/containers/announcing-amazon-ecs-deployment-circuit-breaker/) automatically rolls back unhealthy service deployments without the need for manual intervention. Use `circuitBreaker` to enable deployment circuit breaker and optionally enable `rollback` for automatic rollback. See [Using the deployment circuit breaker](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/deployment-type-ecs.html) for more details. ```python # cluster: ecs.Cluster service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service", cluster=cluster, memory_limit_mi_b=1024, desired_count=1, cpu=512, task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions( image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample") ), circuit_breaker=ecs.DeploymentCircuitBreaker(rollback=True) ) ``` ### Set deployment configuration on QueueProcessingService ```python # cluster: ecs.Cluster queue_processing_fargate_service = ecs_patterns.QueueProcessingFargateService(self, "Service", cluster=cluster, memory_limit_mi_b=512, image=ecs.ContainerImage.from_registry("test"), command=["-c", "4", "amazon.com"], enable_logging=False, desired_task_count=2, environment={}, max_scaling_capacity=5, max_healthy_percent=200, min_healthy_percent=66 ) ``` ### Set taskSubnets and securityGroups for QueueProcessingFargateService ```python # vpc: ec2.Vpc # security_group: ec2.SecurityGroup queue_processing_fargate_service = ecs_patterns.QueueProcessingFargateService(self, "Service", vpc=vpc, memory_limit_mi_b=512, image=ecs.ContainerImage.from_registry("test"), security_groups=[security_group], task_subnets=ec2.SubnetSelection(subnet_type=ec2.SubnetType.PRIVATE_ISOLATED) ) ``` ### Define tasks with public IPs for QueueProcessingFargateService ```python # vpc: ec2.Vpc queue_processing_fargate_service = ecs_patterns.QueueProcessingFargateService(self, "Service", vpc=vpc, memory_limit_mi_b=512, image=ecs.ContainerImage.from_registry("test"), assign_public_ip=True ) ``` ### Define tasks with custom queue parameters for QueueProcessingFargateService ```python # vpc: ec2.Vpc queue_processing_fargate_service = ecs_patterns.QueueProcessingFargateService(self, "Service", vpc=vpc, memory_limit_mi_b=512, image=ecs.ContainerImage.from_registry("test"), max_receive_count=42, retention_period=Duration.days(7), visibility_timeout=Duration.minutes(5) ) ``` ### Set capacityProviderStrategies for QueueProcessingFargateService ```python # cluster: ecs.Cluster cluster.enable_fargate_capacity_providers() queue_processing_fargate_service = ecs_patterns.QueueProcessingFargateService(self, "Service", cluster=cluster, memory_limit_mi_b=512, image=ecs.ContainerImage.from_registry("test"), capacity_provider_strategies=[ecs.CapacityProviderStrategy( capacity_provider="FARGATE_SPOT", weight=2 ), ecs.CapacityProviderStrategy( capacity_provider="FARGATE", weight=1 ) ] ) ``` ### Set a custom container-level Healthcheck for QueueProcessingFargateService ```python # vpc: ec2.Vpc # security_group: ec2.SecurityGroup queue_processing_fargate_service = ecs_patterns.QueueProcessingFargateService(self, "Service", vpc=vpc, memory_limit_mi_b=512, image=ecs.ContainerImage.from_registry("test"), health_check=ecs.HealthCheck( command=["CMD-SHELL", "curl -f http://localhost/ || exit 1"], # the properties below are optional interval=Duration.minutes(30), retries=123, start_period=Duration.minutes(30), timeout=Duration.minutes(30) ) ) ``` ### Set capacityProviderStrategies for QueueProcessingEc2Service ```python import aws_cdk.aws_autoscaling as autoscaling vpc = ec2.Vpc(self, "Vpc", max_azs=1) cluster = ecs.Cluster(self, "EcsCluster", vpc=vpc) auto_scaling_group = autoscaling.AutoScalingGroup(self, "asg", vpc=vpc, instance_type=ec2.InstanceType.of(ec2.InstanceClass.BURSTABLE2, ec2.InstanceSize.MICRO), machine_image=ecs.EcsOptimizedImage.amazon_linux2() ) capacity_provider = ecs.AsgCapacityProvider(self, "provider", auto_scaling_group=auto_scaling_group ) cluster.add_asg_capacity_provider(capacity_provider) queue_processing_fargate_service = ecs_patterns.QueueProcessingFargateService(self, "Service", cluster=cluster, memory_limit_mi_b=512, image=ecs.ContainerImage.from_registry("test"), capacity_provider_strategies=[ecs.CapacityProviderStrategy( capacity_provider=capacity_provider.capacity_provider_name ) ] ) ``` ### Select specific vpc subnets for ApplicationLoadBalancedFargateService ```python # cluster: ecs.Cluster load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service", cluster=cluster, memory_limit_mi_b=1024, desired_count=1, cpu=512, task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions( image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample") ), task_subnets=ec2.SubnetSelection( subnets=[ec2.Subnet.from_subnet_id(self, "subnet", "VpcISOLATEDSubnet1Subnet80F07FA0")] ) ) ``` ### Set PlatformVersion for ScheduledFargateTask ```python # cluster: ecs.Cluster scheduled_fargate_task = ecs_patterns.ScheduledFargateTask(self, "ScheduledFargateTask", cluster=cluster, scheduled_fargate_task_image_options=ecsPatterns.ScheduledFargateTaskImageOptions( image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"), memory_limit_mi_b=512 ), schedule=appscaling.Schedule.expression("rate(1 minute)"), platform_version=ecs.FargatePlatformVersion.VERSION1_4 ) ``` ### Set SecurityGroups for ScheduledFargateTask ```python vpc = ec2.Vpc(self, "Vpc", max_azs=1) cluster = ecs.Cluster(self, "EcsCluster", vpc=vpc) security_group = ec2.SecurityGroup(self, "SG", vpc=vpc) scheduled_fargate_task = ecs_patterns.ScheduledFargateTask(self, "ScheduledFargateTask", cluster=cluster, scheduled_fargate_task_image_options=ecsPatterns.ScheduledFargateTaskImageOptions( image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"), memory_limit_mi_b=512 ), schedule=appscaling.Schedule.expression("rate(1 minute)"), security_groups=[security_group] ) ``` ### Use the REMOVE_DEFAULT_DESIRED_COUNT feature flag The REMOVE_DEFAULT_DESIRED_COUNT feature flag is used to override the default desiredCount that is autogenerated by the CDK. This will set the desiredCount of any service created by any of the following constructs to be undefined. * ApplicationLoadBalancedEc2Service * ApplicationLoadBalancedFargateService * NetworkLoadBalancedEc2Service * NetworkLoadBalancedFargateService * QueueProcessingEc2Service * QueueProcessingFargateService If a desiredCount is not passed in as input to the above constructs, CloudFormation will either create a new service to start up with a desiredCount of 1, or update an existing service to start up with the same desiredCount as prior to the update. To enable the feature flag, ensure that the REMOVE_DEFAULT_DESIRED_COUNT flag within an application stack context is set to true, like so: ```python # stack: Stack stack.node.set_context(cxapi.ECS_REMOVE_DEFAULT_DESIRED_COUNT, True) ``` The following is an example of an application with the REMOVE_DEFAULT_DESIRED_COUNT feature flag enabled: ```python from aws_cdk.core import App, Stack import aws_cdk.aws_ec2 as ec2 import aws_cdk.aws_ecs as ecs import aws_cdk.aws_ecs_patterns as ecs_patterns import aws_cdk.cx_api as cxapi import path as path app = App() stack = Stack(app, "aws-ecs-patterns-queue") stack.node.set_context(cxapi.ECS_REMOVE_DEFAULT_DESIRED_COUNT, True) vpc = ec2.Vpc(stack, "VPC", max_azs=2 ) ecs_patterns.QueueProcessingFargateService(stack, "QueueProcessingService", vpc=vpc, memory_limit_mi_b=512, image=ecs.AssetImage(path.join(__dirname, "..", "sqs-reader")) ) ``` ### Deploy application and metrics sidecar The following is an example of deploying an application along with a metrics sidecar container that utilizes `dockerLabels` for discovery: ```python # cluster: ecs.Cluster # vpc: ec2.Vpc service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service", cluster=cluster, vpc=vpc, desired_count=1, task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions( image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"), docker_labels={ "application.label.one": "first_label", "application.label.two": "second_label" } ) ) service.task_definition.add_container("Sidecar", image=ecs.ContainerImage.from_registry("example/metrics-sidecar") ) ``` ### Select specific load balancer name ApplicationLoadBalancedFargateService ```python # cluster: ecs.Cluster load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(self, "Service", cluster=cluster, memory_limit_mi_b=1024, desired_count=1, cpu=512, task_image_options=ecsPatterns.ApplicationLoadBalancedTaskImageOptions( image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample") ), task_subnets=ec2.SubnetSelection( subnets=[ec2.Subnet.from_subnet_id(self, "subnet", "VpcISOLATEDSubnet1Subnet80F07FA0")] ), load_balancer_name="application-lb-name" ) ```


نیازمندی

مقدار نام
==1.200.0 aws-cdk.aws-applicationautoscaling
==1.200.0 aws-cdk.aws-autoscaling
==1.200.0 aws-cdk.aws-certificatemanager
==1.200.0 aws-cdk.aws-ec2
==1.200.0 aws-cdk.aws-ecs
==1.200.0 aws-cdk.aws-elasticloadbalancingv2
==1.200.0 aws-cdk.aws-events-targets
==1.200.0 aws-cdk.aws-events
==1.200.0 aws-cdk.aws-iam
==1.200.0 aws-cdk.aws-route53-targets
==1.200.0 aws-cdk.aws-route53
==1.200.0 aws-cdk.aws-servicediscovery
==1.200.0 aws-cdk.aws-sqs
==1.200.0 aws-cdk.core
==1.200.0 aws-cdk.cx-api
<4.0.0,>=3.3.69 constructs
<2.0.0,>=1.74.0 jsii
>=0.0.3 publication
~=2.13.3 typeguard


زبان مورد نیاز

مقدار نام
~=3.7 Python


نحوه نصب


نصب پکیج whl aws-cdk.aws-ecs-patterns-1.99.0:

    pip install aws-cdk.aws-ecs-patterns-1.99.0.whl


نصب پکیج tar.gz aws-cdk.aws-ecs-patterns-1.99.0:

    pip install aws-cdk.aws-ecs-patterns-1.99.0.tar.gz