معرفی شرکت ها


awkward1-1.0.0rc1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Manipulate JSON-like data with NumPy-like idioms.
ویژگی مقدار
سیستم عامل -
نام فایل awkward1-1.0.0rc1
نام awkward1
نسخه کتابخانه 1.0.0rc1
نگهدارنده ['Jim Pivarski']
ایمیل نگهدارنده ['pivarski@princeton.edu']
نویسنده Jim Pivarski
ایمیل نویسنده pivarski@princeton.edu
آدرس صفحه اصلی https://github.com/scikit-hep/awkward-1.0
آدرس اینترنتی https://pypi.org/project/awkward1/
مجوز BSD 3-clause
<a href="https://github.com/scikit-hep/awkward-1.0#readme"><img src="https://github.com/scikit-hep/awkward-1.0/raw/main/docs-img/logo/logo-300px.png"></a> Awkward Array is a library for **nested, variable-sized data**, including arbitrary-length lists, records, mixed types, and missing data, using **NumPy-like idioms**. Arrays are **dynamically typed**, but operations on them are **compiled and fast**. Their behavior coincides with NumPy when array dimensions are regular and generalizes when they're not. # Motivating example Given an array of objects with `x`, `y` fields and variable-length nested lists like ```python array = ak.Array([ [{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}], [], [{"x": 4.4, "y": {1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}] ]) ``` the following slices out the `y` values, drops the first element from each inner list, and runs NumPy's `np.square` function on everything that is left: ```python output = np.square(array["y", ..., 1:]) ``` The result is ```python [ [[], [4], [4, 9]], [], [[4, 9, 16], [4, 9, 16, 25]] ] ``` The equivalent using only Python is ```python output = [] for sublist in array: tmp1 = [] for record in sublist: tmp2 = [] for number in record["y"][1:]: tmp2.append(np.square(number)) tmp1.append(tmp2) output.append(tmp1) ``` Not only is the expression using Awkward Arrays more concise, using idioms familiar from NumPy, but it's much faster and uses less memory. For a similar problem 10 million times larger than the one above (on a single-threaded 2.2 GHz processor), * the Awkward Array one-liner takes **4.6 seconds** to run and uses **2.1 GB** of memory, * the equivalent using Python lists and dicts takes **138 seconds** to run and uses **22 GB** of memory. Speed and memory factors in the double digits are common because we're replacing Python's dynamically typed, pointer-chasing virtual machine with type-specialized, precompiled routines on contiguous data. (In other words, for the same reasons as NumPy.) Even higher speedups are possible when Awkward Array is paired with [Numba](https://numba.pydata.org/). Our [presentation at SciPy 2020](https://youtu.be/WlnUF3LRBj4) provides a good introduction, showing how to use these arrays in a real analysis. # Installation Awkward Array can be installed [from PyPI](https://pypi.org/project/awkward) using pip: ```bash pip install awkward ``` You will likely get a precompiled binary (wheel), depending on your operating system and Python version. If not, pip attempts to compile from source (which requires a C++ compiler, make, and CMake). Awkward Array is also available using [conda](https://anaconda.org/conda-forge/awkward), which always installs a binary: ```bash conda install -c conda-forge awkward ``` If you have already added `conda-forge` as a channel, the `-c conda-forge` is unnecessary. Adding the channel is recommended because it ensures that all of your packages use compatible versions: ```bash conda config --add channels conda-forge conda update --all ``` ## Getting help <table> <tr> <td width="66%" valign="top"> <a href="https://awkward-array.org"> <img src="https://github.com/scikit-hep/awkward-1.0/raw/main/docs-img/panel-tutorials.png" width="570"> </a> <p align="center"><b> <a href="https://awkward-array.org"> How-to tutorials </a> </b></p> </td> <td width="33%" valign="top"> <a href="https://awkward-array.readthedocs.io/en/latest/index.html"> <img src="https://github.com/scikit-hep/awkward-1.0/raw/main/docs-img/panel-sphinx.png" width="268"> </a> <p align="center"><b> <a href="https://awkward-array.readthedocs.io/en/latest/index.html"> Python API reference </a> </b></p> <a href="https://awkward-array.readthedocs.io/en/latest/_static/index.html"> <img src="https://github.com/scikit-hep/awkward-1.0/raw/main/docs-img/panel-doxygen.png" width="268"> </a> <p align="center"><b> <a href="https://awkward-array.readthedocs.io/en/latest/_static/index.html"> C++ API reference </a> </b></p> </td> </tr> </table> * Report bugs, request features, and ask for additional documentation on [GitHub Issues](https://github.com/scikit-hep/awkward-1.0/issues). * If you have a "How do I...?" question, ask about it on [StackOverflow with the [awkward-array] tag](https://stackoverflow.com/questions/tagged/awkward-array). Be sure to include tags for any other libraries that you use, such as Pandas or PyTorch. * To ask questions in real time, try the Gitter [Scikit-HEP/awkward-array](https://gitter.im/Scikit-HEP/awkward-array) chat room.


نیازمندی

مقدار نام
>=1.0.0 awkward


زبان مورد نیاز

مقدار نام
>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.* Python


نحوه نصب


نصب پکیج whl awkward1-1.0.0rc1:

    pip install awkward1-1.0.0rc1.whl


نصب پکیج tar.gz awkward1-1.0.0rc1:

    pip install awkward1-1.0.0rc1.tar.gz